¹H(¹¹C,P):res 2006Pe21

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017							

2003Ku36,2003Te01,2003Te09,2003Te12: A beam of 3.5 MeV/nucleon ¹¹C from the RIKEN/CRIB facility impinged on a thick CH₂ target. Scattered protons recoiled out of the target and were detected along θ =0°. The data were analyzed using standard

Thick Target Inverse Kinematics (TTIK) scattering techniques.

2006Pe21: XUNDL dataset compiled by McMaster, 2006.

Beam= ${}^{11}CO_2$, hydrogen targets=(CH₂)_n (polyethylene) and CH₄ (gas).

Two different experiments on ¹¹C+p resonance scattering were carried out:

1. The Berkeley/Bears facility produced a molecular ¹¹CO₂ beam, via the ¹⁴N(p,α) reaction, which was injected into the Berkeley 88-inch cyclotron. ¹¹C beams with 90 MeV and 125 MeV were separately extracted. The 90 MeV beam was degraded to 73.8 MeV and scattered on a CH₂ target to populate ¹²N resonant states with E_x≈2.2-6.6 MeV; the 125 MeV beam was used to populate resonant states with E_x≈6.5-11 MeV. A ΔE-E silicon detector detect scattered protons at θ_{lab}≈0°, 5° and 10°. The excitation function was obtained via standard Thick Target Inverse Kinematics (TTIK) techniques.

2. A 99.8 MeV ¹¹C beam was produced via ¹H(¹¹B,¹¹C) reactions at the Texas A&M/MARS facility. The beam impinged on a (CH₄) gas filled chamber. Four detector telescopes at θ =0°, 12.5°, 11.5° and 16.5° detected scattered protons. The detector resolution was about 50 keV, the absolute calibrations were better than 25 keV. The excitation function was deduced, via TTIK, for $E_x \approx 2.0$ -8.6 MeV.

R-matrix analyses of the excitation functions were carried out using parameters from known ¹²B level structures, along with shell-model calculations.

¹²N Levels

E(level) [@]	\mathbf{J}^{π}	Γ@	E(level) [@]	\mathbf{J}^{π}	Γ@	E(level) [@]	J^{π}	Г [@]
0^{\dagger}	1^{+}		3433	1-	0.052 MeV	5331? [#]	3-	0.480 MeV
960†	2^{+}		3480? ^{‡#}	2^{+}	0.211 MeV	5410? [#]	1+	0.207 MeV
1195 [‡]	2^{-}	0.109 MeV	3983? [#]	2^{-}	1.056 MeV	5500? [#]	1^{-}	1.696 MeV
1796 [‡]	1-	0.581 MeV	4340? [#]	4-	0.572 MeV	7831	$(1^{-},2^{+})$	0.078 MeV
2428 [‡]	0^+	0.079 MeV	5015? [#]	1^{+}	0.445 MeV	8200	$(1^-, 2^-, 3^-)$	1.270 MeV
3127? ^{‡#}	3-	0.227 MeV	5275? [#]	3+	0.490 MeV	10026	(3-)	0.605 MeV

[†] Sub-threshold levels from literature included in R-matrix analysis.

[‡] Also observed in (2003Ku36,2003Te01,2003Te09,2003Te12).

[#] Levels related to known ¹²N or ¹²B states that are included in the R-matrix fit.

[@] From R-matrix analysis (2006Pe21).