¹⁴N(**p**,**t**) **2015Ch50**

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017

2015Ch50: XUNDL dataset compiled by TUNL, 2015; updated, 2017.

The authors used the ¹⁴N(p,t) reaction to populate ¹²N levels to resolve conflicting information on ¹²N levels.

A beam of 38 MeV protons, from the ORNL/Holifield beam facility, impinged on a ^{nat}N (99.632% ¹⁴N) gas target with $(5-6)\times10^{18}$ atoms/cm² at the target position of the JENSA gas-jet target system. The reaction products were detected in the position sensitive SIDAR Δ E-E array, which covered θ =19°-54°.

Angular distributions for triton groups were analyzed via DWBA analysis. Levels up to $E_x \approx 7.5$ MeV are discussed and compared with previous results. The analysis of prior results was guided by comparison with analog levels in ¹²C and ¹²B, the present analysis suggests firmer J^{π} values and new levels at E_x =4561 and 6275 keV.

2017Ch19: The data of (2015Ch50) were reanalyzed, with an emphasis of identifying proton decay from ¹²N states. For events where a triton from ¹⁴N(p,t) reactions was detected in a Δ E-E detector, the events with energy deposited in a different Δ E detector, within 6 μ s, were evaluated in the search for proton emission from ¹²N states. The *triton energy* vs *decay particle energy* plots showed bands that were easily associated with p₀, p₁ and p₂ proton emission to the ¹¹C ground, first and second excited states, respectively. The projections of the different proton bands onto the triton energy axis revealed contributions from the various proton groups. The results on p₂ were not sufficient for a meaningful analysis.

The branching ratios were obtained by assuming isotropic proton emission; the uncertainties include a 30% systematic uncertainty. While the initial intent of the study was not to obtain the proton branching ratios for decay from the ¹²N* levels, the article was prepared since the data reveals the capability of these studies using the SIDAR array.

1976Yo03: $E_p=51.9$ MeV, measured $\sigma(\theta)$.

1976Ce02: E_p =52.5 MeV, measured $\sigma(\theta)$.

References in (1980Aj01): Indicate $\Delta M(^{12}N)=17338$ keV 1.

¹²N Levels

		1	T	$d\sigma/d\Omega$ (30°) relative to ground state	Comments
0	1+	<179 keV	2	1	
956 8 2	2+	<179 keV	2	0.49 1	
1195 30	2-	116 keV 74	1,2	0.06 1	
2438 <i>16</i> (3135 <i>19</i> 2	0^+ 2^+	77 keV 92 217 keV 82	2 [‡] 2	0.09 <i>1</i> 0.03 <i>1</i>	%p ₀ =82 26. %p ₀ =48 15.
3558 7 4.16×10 ³ ? <i>10</i>	1+	245 keV 56	(2,0) [‡]	0.20 2	$\% p_0 = 36 \ 11.$ E(level): From E _x =4157 keV 102. J ^{π} =2-&4 ⁻ in Adopted Levels.
4561 <i>24</i> (5346 <i>9</i> ($(1,2)^+$ $(1,2,3)^+$	517 keV 72 340 keV 91	(2,0) [‡] 2	0.26 2 0.11 2	$%p_0=6\ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
6275 <i>21</i> ((1-,3+)	256 keV 88	(1,2) [‡]	0.17 2	$%p_0=12 4 $ \$ $%p_1=17 5$. E(level): Likely multiplet.

[†] The experimental resolution has been removed from all widths except for ${}^{12}N*(0,956)$.

[‡] Likely admixture based on DWBA analysis.

[#] From (2015Ch50).