¹²C(³He,t) **1983St10**

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017	

1969Ba06: ¹²C(³He,t) E=40-50 MeV, measured $\sigma(E_t,\theta)$. Deduced optical-model parameters. ¹²N deduced levels.

1970Ar05: ¹²C(³He,t) E=36 MeV, measured $\sigma(E_t,\theta)$. ¹²N levels deduced J, π , isobaric analogs.

- 1970Si16: ¹²C(³He,t) E=22.3 to 30.6 MeV, measured σ .
- 1974Wi16, 1976Wi05: ¹²C(³He,t) E=217 MeV, measured $\sigma(E_t,\theta)$.

1976Ce02: ¹²C(³He,t) E=44 MeV, measured $\sigma(\theta)$. ¹²N level deduced J, π , T.

1976Ma15: ¹²C(³He,t) E=49.3 MeV, measured $\sigma(E_t,\theta)$. ¹²N deduced levels, Γ .

1981Aa01: ¹²C(³He,t) E=52 MeV, measured $\sigma(E_t, \theta_t)$, Pt-coin, $\sigma(E1, \theta_1, \theta_2)$. Deduced reaction mechanisms.

1982Ta05: ¹²C(³He,t) E=130,170 MeV, measured $\sigma(E_t)$, $\sigma(\theta)$. ¹²N deduced IAS of T=1, GDR.

1983Fr10: ¹²C(³He,t) E=200 MeV, measured $\sigma(E_t)$.

1983Ga15,1986Co03,1987Be25,1988Ro17,1990Ga19,1993Ro09: ${}^{12}C({}^{3}He,t) E=0.6-2.3 \text{ GeV}$, measured $\sigma(E_t,\theta=0^\circ)$. Deduced Gamow-Teller strength distribution systematics, isobar excitation role. ${}^{12}N$ deduced selective spin-isospin mode excitation.

1983St10: ¹²C(³He,t) E=75,81 MeV, measured $\sigma(E_t,\theta_t)$, $\sigma(E_t)$. DWBA analysis.

1984Ab06,1988Ab08: ¹²C(³He,t) E At 4.37-10.78 GeV/c, measured $\sigma(\theta)$ vs energy transfer. Deduced target Δ -isobar excitation role.

1984Ga36: ¹²C(³He,t) E=200,600 MeV, analyzed $\sigma(E_t,\theta_t)$. Deduced isobar resonance role.

1984Ta11: ¹²C(³He,t) E=197 MeV, measured $\sigma(E_t)$, $\theta=15^\circ$. ¹²N deduced levels, isovector GDR analog.

1984Va43: ¹²C(³He,t) E=75,81 MeV, measured $\sigma(E_t, \theta_t)$, $\sigma(\theta_t)$. ¹²N deduced transition strengths.

1987E114: ¹²C(³He,t) E=0.2,0.9,2 GeV, measured $\sigma(E_t, \theta_t)$.

1989Os03: ¹²C(³He,t) E=2 GeV, analyzed $\sigma(\theta_t, E_t)$.

1989Si21: ${}^{12}C({}^{3}He,t) \to At 4.4-10.79 \text{ GeV/c}$, analyzed Δ -peak shift.

1989Va09: ¹²C(³He,t) E=66-90 MeV, measured $\sigma(E_t, \theta_t)$. Deduced effective projectile-nucleon force parameters. DWBA analysis.

1991Gr03: ¹²C(³He,t) E=81 MeV. ¹²N deduced isovector giant resonance. DWBA analysis.

1991He12: ¹²C(³He,t) E=2 GeV, measured $\sigma(E_t,\theta)$. Deduced isobar decay Γ target dependence.

1991Ja04: ¹²C(³He,t) ¹²C(³He,t) E=76.5, 200 MeV, measured $\sigma(E_t)$. Deduced Q-values for transitions to IAS, non-spin-flip charge exchange effective interaction.

1992He08: ¹²C(³He,t) E=2 GeV, measured energy transfer spectra, $(\pi^+P)(t)$ -coin. Deduced Δ -resonance decay, absorption mechanism.

1994Os02: ¹²C(³He,t) E=2 GeV, analyzed $\sigma(\theta)$ vs energy transfer.

1996Ke04: ¹²C(³He,t) E=2 GeV, analyzed $\sigma(\theta_t, E_t)$. DWBA based t-matrix.

1994Ha40,1998Ha43,1998In02: ¹²C(³He,t) E=450 MeV, measured excitation energy spectra, proton, neutron $\sigma(\theta)$ following residual nucleus decay. ¹²N deduced spin-isospin excitation modes, particle decay features.

2011Pe12: ¹²C(³He,t) E=140 MeV/nucleon, α =1-120 targets, analyzed cross section, B(GT), unit cross sections, distortion factors, volume integrals, kinematic factors.

¹²N Levels

E(level) [†]	$J^{\pi^{\dagger}}$	Γ [†]	Comments
0	(1^+)		
960	(2^{+})	<20 keV	Γ : See references in (1980Aj01).
1193 10	2-	120 keV 20	
1.80×10 ³ 3	1-	0.75 MeV 25	
2445 10	0^{+}	110 keV 20	
3.14×10 ³ 1	$(2^+, 3^-)$	220 keV 25	
$3.57 \times 10^3 I$	1+	260 keV 30	
4.14×10 ³ 1	$2^{-}\&4^{-}$	830 keV 20	E(level): Likely due to unresolved states.
5.37×10 ³ 1	3-	150 keV 30	
5.60×10^3 ? 1		120 keV 50	
6.40×10 ³ 3	(1 ⁻)	1.20 MeV 30	

Continued on next page (footnotes at end of table)

 $^{12}_{7}N_{5}$

¹²C(³He,t) **1983St10** (continued)

¹²N Levels (continued)

E(level) [†]	$J^{\pi \dagger}$	Γ^{\dagger}	Comments
$\begin{array}{c} 7.40 \times 10^3 \ 5 \\ 7.70 \times 10^3 \ 1 \\ 8.86 \times 10^3 \ 7 \ 10 \\ 9.80 \times 10^3 \ 2 \\ 10.30 \times 10^3 \ 2 \\ 11.00 \times 10^3 \ 2 \end{array}$	(1-)	1.20 MeV 50 200 keV 50 ≈100 keV 0.45 MeV 10 0.45 MeV 10 0.35 MeV 10	E(level),Γ: From values listed in (1980Aj01).

 † From (1983St10), see other less precise values listed in (1980Aj01).