⁹Be(¹⁴B, ¹²Li) **2010Ha04**

Type Author Citation Literature Cutoff Date

Full Evaluation J. H. Kelley, J. E. Purcell and C. G. Sheu NP A968, 71 (2017)

1-Jan-2017

2010Ha04: The authors measured the two proton removal reaction ${}^9\mathrm{Be}({}^{14}\mathrm{B},{}^{12}\mathrm{Li})$ at $\mathrm{E}({}^{14}\mathrm{B}){=}53.4$ MeV/nucleon. Residual ${}^{12}\mathrm{Li}$ nuclei decayed into ${}^{11}\mathrm{Li}{+}\mathrm{n}$ which were detected in the NSCL MoNA/Sweeper dipole magnet array. Resonance energies are deduced from the kinematic reconstruction.

¹²Li Levels

E(level) [†]	\mathbf{J}^{π}	Γ	$E_{res}(^{11}Li+n)$ (keV)	Comments
0?	(2-)		120 15	J^{π} : From L=0 neutron decay to n+11Li(3/2 ⁻).
90 25	(4-)	<15 keV	250 20	E(level): The manuscript reports E_{res} =250 keV 20 above the 11 Li+n breakup threshold. A reanalysis in (2013Ko03), which is not accepted, assumes this state is the g.s. and gives a revised value of E_{res} =210 keV 30 for this state.
405 25	(1-)	<80 keV	555 20	E(level): The manuscript reports E _{res} =555 keV 20 above the ¹¹ Li+n breakup threshold. A reanalysis in (2013Ko03) gives a different interpretation and a revised value of E _{res} =525 keV 25 for this state.

[†] In the present analysis the ground state is assumed to be neutron unbound by 120 keV 15 as was reported in (2008Ak03).