|                 | History                               |                     |                        |
|-----------------|---------------------------------------|---------------------|------------------------|
| Туре            | Author                                | Citation            | Literature Cutoff Date |
| Full Evaluation | D. M. Symochko, E. Browne, J. K. Tuli | NDS 110,2945 (2009) | 1-Dec-2008             |

 $Q(\beta^{-}) = -3.42 \times 10^{3} 3$ ; S(n) = 7556 21; S(p) = 6474 9;  $Q(\alpha) = 428 8 2012$  Wa38 Note: Current evaluation has used the following Q record  $-3.42E+3 3 7.58 \times 10^{3} 2 6474 8 427 8 2009$ AuZZ,2003Au03. S(n) = 7535 17 (2003Au03).

Theory:: Structure calculations - quasiparticle-phonon model (1994Di06), total Routhian surface formalism (1995Pa41).

<sup>119</sup>Te Levels

J(A,B,C) From assignment to a band, in addition to the arguments given.

Cross Reference (XREF) Flags

|                                     |                                                          |                  | A<br>B    | <sup>119</sup> I $\varepsilon$ decay D <sup>120</sup> Te( <sup>3</sup> He, $\alpha$ )<br><sup>117</sup> Sn( $\alpha$ ,2n $\gamma$ ) E (HI,xn $\gamma$ )                                                      |  |  |  |  |  |  |  |  |
|-------------------------------------|----------------------------------------------------------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                     |                                                          |                  | С         | $^{120}$ Te(d,t),(pol d,t)                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| E(level) <sup>†</sup>               | $\mathbf{J}^{\pi}$                                       | T <sub>1/2</sub> | XREF      | Comments                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| 0.0                                 | 1/2+                                                     | 16.05 h 5        | ABCDE     | $\%\varepsilon + \%\beta^+ = 100; \ \%\beta^+ = 2.06 \ 5$                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | $\mu$ atomic-beam magnetic resonance (2005St24).                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | $T_{1/2}$ : from $\gamma(t)$ in <sup>119</sup> Te $\varepsilon$ decay (1973Ka45). Other: 15.9 h 3 (1961Fi05).                                                                                                |  |  |  |  |  |  |  |  |
| 257.484 21                          | 3/2+                                                     |                  | ABC E     | $J^{\alpha}$ : J=1/2 from atomic beam (19/6Fu06); L( <sup>3</sup> He, $\alpha$ ),(d,t)=0.<br>J <sup>\pi</sup> : L(d,t)=2, M1+E2 $\gamma$ to 1/2 <sup>+</sup> .                                               |  |  |  |  |  |  |  |  |
| 260.96 <sup>#</sup> 5               | 11/2-                                                    | 4.70 d 4         | ABCDE     | $\%\epsilon + \%\beta^{+} = 100; \% \text{IT} < 0.008 (1975 \text{Du04}); \%\beta^{+} = 0.41 4$                                                                                                              |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | $\mu$ =0.894 6<br>Additional information 1                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | $\mu$ : radiative detection of NMR (2005St24).                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | $T_{1/2}$ : weighted av of 4.79 d <i>12</i> (1973Ka45), 4.7 d <i>3</i> (1960Ko12) 4.68 d 5                                                                                                                   |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | from <sup>119</sup> Te $\varepsilon$ decay.                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | J <sup><math>\pi</math></sup> : J=11/2 from atomic beam (1976Fu06), L( <sup>3</sup> He, $\alpha$ ), (pol d,t)=5.                                                                                             |  |  |  |  |  |  |  |  |
| 320.506 <sup>4</sup> 20             | 5/2+                                                     | 2.2 ns 2         | ABCDE     | $\mu$ =-0.9 2<br>$\mu$ : integral-perturbed angular distribution of $\gamma$ rays following reactions                                                                                                        |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | (2005St24).                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                     |                                                          |                  |           | $J^{\pi}: L(d,t), ({}^{3}He, \alpha) = 2; \gamma(\theta) \text{ in } (\alpha, 2n\gamma).$                                                                                                                    |  |  |  |  |  |  |  |  |
| 360.39 <i>3</i>                     | 7/2+                                                     |                  | A CD      | $J_{1/2}^{\pi}$ . Itom y(t) in ( $\alpha$ , 2iry).<br>J <sup><math>\pi</math></sup> : L(d,t),( <sup>3</sup> He, $\alpha$ )=4; log <i>ft</i> =6.76 from 5/2 <sup>+</sup> excludes 9/2 <sup>+</sup> .          |  |  |  |  |  |  |  |  |
| 467.96 <sup>@</sup> 4               | 9/2-                                                     |                  | AB DE     | $J^{\pi}$ : $\sigma(\theta)$ in ( <sup>3</sup> He,d).                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 501.10 4                            | 7/2-                                                     |                  | A CD      | $J^{\pi}$ : L(d,t),( <sup>3</sup> He, $\alpha$ )=3; $\gamma$ to 11/2 <sup>-</sup> .                                                                                                                          |  |  |  |  |  |  |  |  |
| 557.17 <i>3</i><br>598.18 <i>21</i> | 3/2",5/2"                                                |                  | A CD<br>B | $J^{*}: L({}^{\circ}He, \alpha), (d,t)=2.$                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| 635.86 <i>3</i>                     | 5/2+                                                     |                  | A CD      | J <sup><math>\pi</math></sup> : L(d,t),( <sup>3</sup> He, $\alpha$ )=2; M1+E2+E0 $\gamma$ to 5/2 <sup>+</sup> rules out 3/2 <sup>+</sup> .                                                                   |  |  |  |  |  |  |  |  |
| 661.27 4                            | 7/2-                                                     |                  | A C       | $J^{\pi}$ : L(pol d,t)=(3); $\gamma$ 's to 5/2 <sup>+</sup> and 11/2 <sup>-</sup> , log <i>ft</i> =7.22 (log <i>f</i> <sup>1<i>u</i></sup> <i>t</i> =8.55) from 5/2 <sup>+</sup> excludes 9/2 <sup>+</sup> . |  |  |  |  |  |  |  |  |
| 669.31 4                            | 7/2+                                                     |                  | ABCD      | $J^{\pi}$ : L(d,t),( <sup>3</sup> He, $\alpha$ )=4; M1+E2 $\gamma$ to 5/2 <sup>+</sup> .                                                                                                                     |  |  |  |  |  |  |  |  |
| 703.08 <sup>‡</sup> 20              | $(7/2^+)$                                                |                  | BE        | $J^{\pi}$ : (M1+E2) $\gamma$ to 5/2 <sup>+</sup> , $\gamma(\theta)$ in (HI,xn $\gamma$ ).                                                                                                                    |  |  |  |  |  |  |  |  |
| 707.68 5                            | $\frac{1}{2}^{+}$<br>$\frac{3}{2}^{+}$ $\frac{5}{2}^{+}$ |                  |           | $J^{*}: L(d,t)=0.$<br>$I^{*}: L({}^{3}He \alpha) (d t)=2$                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 743.08 6                            | 7/2-,9/2-                                                |                  | A C       | $J^{\pi}$ : L(pol d,t)=3, $\gamma$ to 11/2 <sup>-</sup> excludes 5/2 <sup>-</sup> .                                                                                                                          |  |  |  |  |  |  |  |  |
| 747 20                              | $(3/2^+, 5/2^+)$                                         |                  | С         | $J^{\pi}$ : L(d,t)=(2).                                                                                                                                                                                      |  |  |  |  |  |  |  |  |

# <sup>119</sup>Te Levels (continued)

| E(level) <sup>†</sup>   | $\mathbf{J}^{\pi}$           | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 766.60 18               | 5/2-,7/2-                    | ABCd | XREF: d(771).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                              |      | $J^{\pi}: L(\text{pol } d, t) = 3.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 771.7 <i>3</i>          | 5/2-                         | BCD  | $J^{\pi}$ : L(d,t),( <sup>3</sup> He, $\alpha$ )=3; $\gamma$ to 3/2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 813.31 4                | 3/2+,5/2+                    | A CD | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ ),(d,t)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 877.45 5                | 3/2+,5/2+                    | A Cd | XREF: d(883).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                              |      | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 889.07 <i>3</i>         | $3/2^+, 5/2^+$               | A Cd | XREF: d(883).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 001.0.6                 | (5/0- 7/0-)                  | ~    | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 901.0 6                 | (5/2 , 1/2 )                 | C    | $J^{A}$ : L(pol d,t)=(3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 901.26 <sup>#</sup> 10  | $15/2^{-}$                   | BE   | $J^{\pi}$ : E2 $\gamma$ to $11/2^{-}$ , $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 906 10                  |                              | D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 945.92+ 18              | $(9/2^+)$                    | ΒE   | $J^{\pi}$ : (M1+E2) $\gamma$ to (7/2 <sup>+</sup> ) $\gamma$ , ( $\theta$ ) in ( $\alpha$ ,2n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 957.1 4                 |                              | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 964.21 4                | 3/2+,5/2+                    | A CD | $J^{n}$ : L( <sup>3</sup> He, $\alpha$ ),(d,t)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 979.96 <sup>w</sup> 13  | $(13/2^{-})$                 | ΒE   | $J^{\pi}$ : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 984.6 <i>3</i>          | 7/2+,9/2+                    | CD   | XREF: D(995).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 004 41 27               | 5/2- 7/2-                    | DC   | $J^{n}$ : L(pol d,t)=4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 994.41 <i>21</i>        | $\frac{5}{2}, \frac{1}{2}$   | BC   | $J^{*}$ : L(pol d,t)=3.<br>$\overline{\pi}$ , L(d,t)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1005.99 5               | $\frac{1}{2}$<br>(7/2+ 0/2+) | AC   | $J^{*}$ : L(u,t)=0.<br>$I^{\pi}$ : L (pol d t)=(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1092.6.7                | (1/2, 1/2)                   | c    | J : E(pot u, t) = (4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1104.87 9               | $(7/2^+, 9/2^+)$             | Ad   | XREF: d(1111).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                              |      | $J^{\pi}$ : L( <sup>3</sup> He. $\alpha$ )=(4):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1113.57 3               | $5/2^{+}$                    | A Cd | XREF: d(1111).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                              |      | $J^{\pi}$ : L(pol d,t)=2, $\gamma$ to 1/2 <sup>+</sup> , $\gamma$ 's to 7/2 <sup>+</sup> and 7/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1132.1 4                | $1/2^{+}$                    | С    | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1154.7 20               | $1/2^{-}, 3/2^{-}$           | С    | $J^{\pi}$ : L(pol d,t)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1162.32 9               | 7/2-,9/2-                    | Α    | $J^{\pi}$ : $\gamma$ 's to $7/2^+$ and $11/2^-$ ; log ft=7.57 (log $f^{lu}t=8.8$ ) from $5/2^+$ excludes $9/2^+$ and $11/2^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1184.79 6               | 5/2-,7/2+                    | Α    | $J^{\pi}$ : $\gamma$ 's to $3/2^+$ and $9/2^-$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1189.0 3                | $(1/2^+, 9/2^+)$             | C    | $J^{n}$ : L(pol d,t)=4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1197.13 0               | $(3/2^{+})$                  | A Ca | AKEF: $U(1198)$ .<br>$I^{\pi}$ , $I(roldt) = 2$ , $M1 + E2 + E0$ or to $2/2^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1107 71 7               | 3/2- 5/2 7/2                 | h A  | <b>J</b> . $L(pol (d, t)=2, M1+E2+E0 \ \gamma \ to \ 5/2$ .<br><b>YREE:</b> $d(1108)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1197.717                | 5/2 ,5/2,7/2                 | лu   | $I^{\pi}$ : $\gamma'$ s to $5/2^+$ and $7/2$ log ff=7.11 from $5/2^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1201.50 17              | $(1/2, 3/2, 5/2^+)$          | A    | $J^{\pi}$ : $\gamma$ to $1/2^+$ . $\varepsilon + \beta^+$ feeding from $5/2^+$ is weak, but if real, would rule out $1/2^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1215.5 3                |                              | В    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1251.0 5                |                              | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1264.3 5                | $(1/2^+)$                    | С    | $J^{\pi}$ : L(pol d,t)=(0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1277.2 4                | $1/2^{+}$                    | C    | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1280.83 <sup>‡</sup> 19 | $(11/2^+)$                   | ΒE   | $J^{\pi}$ : (M1+E2) $\gamma$ to 9/2 <sup>+</sup> , $\gamma(\theta)$ in ( $\alpha$ ,2n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1290.8 5                | $1/2^{+}$                    | С    | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1296.1 4                |                              | В    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1361.1 5                | $3/2^+, 5/2^+$               | C    | $J^{*}$ : L(pol d,t)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13/0.80 0               | 3/2 ,5/2                     | A Ca | <b>AKEF:</b> $U(15/2)$ .<br>$I^{\pi_{1}} e^{J_{2}} = t_{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} $ |
| 1373 29 10              |                              | h A  | $3 \cdot y = 5 \text{ to } 1/2$ and $1/2 \cdot 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1400.9 4                | $7/2^+.9/2^+$                | Cd   | XREF: d(1411).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | .1=1=                        |      | $J^{\pi}$ : L(pol d,t)=4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1418.0 4                | 7/2+,9/2+                    | Cd   | XREF: d(1411).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                              |      | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ ), (pol d,t)=4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1434.0 4                | 7/2+,9/2+                    | С    | $J^{\pi}$ : L(pol d,t)=4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1443 10                 | 7/2+,9/2+                    | D    | $J^{\pi}: L({}^{3}\text{He}, \alpha) = 4.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1444.6 4                | 1/2+                         | С    | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1445.61 8               | $3/2^+, 5/2^+$               | Α    | $J^{n}: \gamma'$ s to $1/2^{+}$ and $7/2^{+}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# <sup>119</sup>Te Levels (continued)

| E(level) <sup>†</sup>   | $\mathbf{J}^{\pi}$                  | XREF   | Comments                                                                                                                                                        |
|-------------------------|-------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1479 1                  |                                     | C      |                                                                                                                                                                 |
| 1505.1.5                | $1/2^{+}$                           | Ċ      | $I^{\pi}$ : L(pol d t)=0.                                                                                                                                       |
| 1512.88 7               | 5/2+                                | A CD   | $J^{\pi}$ : L(pol d.t)=2: $\gamma$ to $9/2^+$ .                                                                                                                 |
| 1528.31 8               | $(1/2^+, 3/2, 5/2^+)$               | A      | $J^{\pi}$ : $\gamma'$ s to $1/2^+$ and $5/2^+$ . Weak $\varepsilon + \beta^+$ feeding from $5/2^+$ , if real, would rule out $1/2^+$ .                          |
| 1530.55 3               | 3/2+.5/2+                           | AC     | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                                       |
| 1540.2 5                | $7/2^+, 9/2^+$                      | C      | $J^{\pi}$ : L(pol d,t)=4.                                                                                                                                       |
| 1586 43 22              | $(13/2^+)$                          | RF     | $I^{\pi}$ : (M1+F2) $\gamma$ to (11/2 <sup>-</sup> ) $\gamma(\theta)$ in ( $\alpha$ 2n $\gamma$ )                                                               |
| 1502.8 4                | $(15/2)^{+}$<br>$3/2^{+}$ $5/2^{+}$ | C L    | $I^{\pi}$ : I (nol d t)-2                                                                                                                                       |
| $1502.0 \neq$           | $(17/2^{-})$                        |        | $\pi_{1} = E(p(1, t) - 2)$                                                                                                                                      |
| 1398.07 - 14            | (17/2)                              | D L    | $J^{T}$ . E2 $\gamma$ to (15/2), $\gamma(\theta)$ III ( $\alpha, 2\Pi\gamma$ ).                                                                                 |
| 1004 10                 | 1/2*,9/2*                           | D      | $J^*: L({}^\circHe,\alpha)=4.$                                                                                                                                  |
| 1618.96 <sup>m</sup> 16 | $(19/2^{-})$                        | ΒE     | $J^{n}$ : (E2) $\gamma$ to (15/2 <sup>-</sup> ), $\gamma(\theta)$ in ( $\alpha$ ,2n $\gamma$ ).                                                                 |
| 1620.0 5                | 1/2-,3/2-                           | C      | $J^{n}$ : L(pol d,t)=1.                                                                                                                                         |
| 1624.25 8               | 3/2,5/2+                            | A      | $J^{n}$ : $\gamma$ 's to $1/2^{+}$ and $5/2^{+}$ , log $ft=7.71$ from $5/2^{+}$ .                                                                               |
| 1632.05 15              | $(1/2, 3/2, 5/2^+)$                 | A      | J <sup>*</sup> : $\gamma$ to 1/2 <sup>+</sup> . $\varepsilon + \beta^+$ feeding from 5/2 <sup>+</sup> is weak, but if real, then 1/2 <sup>+</sup> is rules out. |
| 1654.8 5                | 3/2+,5/2+                           | C      | $J^{\prime\prime}$ : L(pol d,t)=2.                                                                                                                              |
| 16/4.23 4               | 5/21                                | A CD   | XREF: $D(1660)$ .                                                                                                                                               |
| 1690.2.5                | (5/0 - 7/0 -)                       | C      | J <sup>*</sup> : L(pol d,l)=2; M1+E2+E0 $\gamma$ to 5/2 <sup>*</sup> .                                                                                          |
| 1080.2 3                | (3/2, 7/2)                          | C      | $J^{T}$ : L(poi d,t)=(5).                                                                                                                                       |
| 1704 10                 | $(1/2^{+}, 9/2^{+})$                | CD     | $J^*: L(=He, \alpha), \text{ (pol } d, t)=(4).$                                                                                                                 |
| 1720.0 5                | 1/2, $3/22/2 5/2^+$                 |        | $J^{*}$ : L(pol d,t)=1.                                                                                                                                         |
| 1729.21 0               | $\frac{5}{2}, \frac{5}{2}$          | A      | $J^{*}$ : $\gamma$ s to $1/2^{+}$ and $5/2^{+}$ , log $f = 7.05$ from $5/2^{+}$ .                                                                               |
| 1739.05 5               | 5/2, 5/2<br>(5/2 - 7/2 - )          | A<br>C | $J : \gamma \in [0, 1/2]$ and $J/2 : \log f = 0.74$ from $J/2 :$                                                                                                |
| 1741.5 5                | (3/2, 7/2)<br>(7/2+0/2+)            |        | I = L(pol (d, t) - (5)).                                                                                                                                        |
| 1740 10                 | (1/2, 9/2)                          | C C    | $J^{*}$ . L( $\Pi C, U$ )=(4).<br>$I^{*}$ : L (nol d t)=2                                                                                                       |
| 1706.4.8                | 5/2 ,1/2                            | C      | J : L(poi (a,t)=5.                                                                                                                                              |
| 1808 9 5                | 1/2+                                | Ċ      | $I^{\pi}$ . I (nol d t)=0                                                                                                                                       |
| 1810 10                 | $(7/2^+ 0/2^+)$                     | D D    | I = L(pol d, t) = 0.<br>$I = I = (J + a_{2}) = (J)$                                                                                                             |
| 1873 7 6                | (1/2, 3/2)<br>$5/2^{-}7/2^{-}$      | Ċ      | $J : L(\Pi C, u) - (4).$                                                                                                                                        |
| 1823.8 5                | $3/2^+, 7/2^+$<br>$3/2^+, 5/2^+$    | Ċ      | J : E(pol d, t) = 3.<br>$I^{\pi}: I (pol d t) = 2$                                                                                                              |
| 1834 91 5               | $(5/2^{-} 7/2^{+})$                 | Δ      | $I^{\pi}$ : $\chi'_{s}$ to $3/2^{+}$ and $9/2^{-}$                                                                                                              |
| 1863.9 11               | $1/2^{-}.3/2^{-}$                   | ° c    | $J^{\pi}$ : L(pol d.t)=1.                                                                                                                                       |
| 1877.1 9                | $1/2^+$                             | C      | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                       |
| 1888 10                 | $(3/2^+, 5/2^+)$                    | D      | $J^{\pi}: L({}^{3}\text{He}, \alpha) = (2).$                                                                                                                    |
| 1889.0 5                | (=]= ,=]= )                         | В      |                                                                                                                                                                 |
| 1892.3 9                | $7/2^+, 9/2^+$                      | c      | $J^{\pi}$ : L(pol d,t)=4.                                                                                                                                       |
| 1910.3 10               | $1/2^{-}, 3/2^{-}$                  | С      | $J^{\pi}$ : L(pol d,t)=1.                                                                                                                                       |
| 1924 10                 | $(7/2^+, 9/2^+)$                    | D      | $J^{\pi}$ : $L({}^{3}He, \alpha) = (4).$                                                                                                                        |
| 1936.4 10               | 3/2+,5/2+                           | С      | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                                       |
| 1939.83 <sup>‡</sup> 24 | $(15/2^+)$                          | ΒE     | $J^{\pi}$ : $\gamma$ to $(13/2^+)$ , (E2) $\gamma$ to $11/2^+$ , $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ .                                                     |
| 1969 10                 | $(7/2^+ 9/2^+)$                     | <br>п  | $I^{\pi} \cdot I ({}^{3}He \alpha) = (4)$                                                                                                                       |
| 1973.6 10               | $1/2^+$                             | c      | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                       |
| 1999 2                  | -) -                                | Ċ      |                                                                                                                                                                 |
| 2005 2                  |                                     | Ċ      |                                                                                                                                                                 |
| 2010 10                 | $(7/2^+, 9/2^+)$                    | D      | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ )=(4).                                                                                                                 |
| 2014.5 10               | $(1/2^+)$                           | С      | $J^{\pi}$ : L(pol d,t)=(0).                                                                                                                                     |
| 2024.55 15              | 3/2+,5/2,7/2+                       | Α      | $J^{\pi}$ : $\gamma'$ 's to $3/2^+$ and $7/2^+$ .                                                                                                               |
| 2048.3 10               | 1/2+                                | С      | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                                       |
| 2059.1 8                | $1/2^{-}, 3/2^{-}$                  | С      | $J^{\pi}$ : L(pol d,t)=1.                                                                                                                                       |
| 2075.5 8                | 7/2+,9/2+                           | С      | $J^{\pi}$ : L(pol d,t)=4.                                                                                                                                       |
| 2078.45 7               | $3/2^+, 5/2^+$                      | Α      | $J^{\pi}$ : $\gamma'$ s to $1/2^+$ and $7/2^+$ .                                                                                                                |
| 2081 10                 | $(7/2^+, 9/2^+)$                    | D      | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ )=(4).                                                                                                                 |
| 2089.6 8                | $(1/2^+)$                           | С      | $J^{\pi}$ : L(pol d,t)=(0).                                                                                                                                     |

# <sup>119</sup>Te Levels (continued)

| E(level) <sup>†</sup>   | $\mathbf{J}^{\pi}$    | XREF | Comments                                                                                                                                    |
|-------------------------|-----------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2101.87 <sup>@</sup> 15 | $(21/2^{-})$          | ΒE   | $J^{\pi}$ : (E2) $\gamma$ to (17/2 <sup>-</sup> ), (M1+E2) $\gamma$ to (19/2 <sup>-</sup> ), $\gamma(\theta)$ in ( $\alpha$ .2n $\gamma$ ). |
| 2105.95.5               | $(3/2^+, 5/2, 7/2^+)$ | Α _  | $I^{\pi}$ : $\gamma'$ s to $3/2^+$ and $5/2^+$ , log $ft=6.46$ for probable feeding from $5/2^+$ .                                          |
| 2113.09 10              | 3/2+.5/2.7/2+         | A    | $J^{\pi}$ : $\gamma'$ s to $3/2^+$ and $7/2^+$ .                                                                                            |
| 2138.4 9                | $(3/2^+, 5/2^+)$      | С    | $J^{\pi}$ : L(pol d,t)=(2).                                                                                                                 |
| 2153.4 9                | 1/23/2-               | Cd   | XREF: d(2214).                                                                                                                              |
|                         | 1 )-1                 |      | $J^{\pi}$ : L(pol d,t)=1.                                                                                                                   |
| 2217.5 12               | $(7/2^+, 9/2^+)$      | CD   | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ ), (pol d,t)=(4).                                                                                  |
| 2239.0 9                | $3/2^+, 5/2^+$        | С    | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                   |
| 2254 2                  | 1/2+                  | С    | $J^{\pi}$ : L(pol d,t)=0.                                                                                                                   |
| 2266.8 9                | 3/2+,5/2+             | С    | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                   |
| 2272.46 <sup>#</sup> 17 | (23/2 <sup>-</sup> )  | ΒE   | $J^{\pi}$ : E2 $\gamma$ to (19/2 <sup>-</sup> ), (M1+E2) $\gamma$ to (21/2 <sup>-</sup> ), $\gamma(\theta)$ in ( $\alpha$ ,2n $\gamma$ ).   |
| 2276 10                 | $(7/2^+, 9/2^+)$      | D    | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ )=(4).                                                                                             |
| 2302.77 18              | $(23/2^-, 25/2^-)$    | В    | $J^{\pi}$ : (M1+E2) $\gamma$ to (21/2 <sup>-</sup> ), $\gamma(\theta)$ in ( $\alpha$ ,2n $\gamma$ ).                                        |
| 2325.8 9                | $(3/2^+, 5/2^+)$      | C    | $J^{\pi}: L(\text{pol } d, t) = (2).$                                                                                                       |
| 2346.0 8                | 3/2+,5/2+             | C    | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                   |
| 2347 10                 | $(7/2^+, 9/2^+)$      | D    | $J^{\pi}$ : L( <sup>3</sup> He, $\alpha$ )=(4).                                                                                             |
| 2376.5 9                | 3/2+,5/2+             | Cd   | XREF: d(2384).                                                                                                                              |
|                         |                       |      | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                   |
| 2389.1 9                | 3/2+,5/2+             | Cd   | XREF: d(2389).                                                                                                                              |
| 2405.0.0                | 1/2- 2/2-             | ~    | $J^{\pi}$ : L(pol d,t)=2.                                                                                                                   |
| 2405.0 9                | $1/2^{-}, 3/2^{-}$    | C    | $J^{\pi}$ : L(pol d,t)=1.                                                                                                                   |
| 2418.4 12               | 1/2                   | C    | $J^{*}$ : L(pol d,t)=0.                                                                                                                     |
| 2400.5 9                | $3/2^{+}, 3/2^{+}$    | C    | $J^{*}$ : L(pol d,t)=2.                                                                                                                     |
| 2460.0 9                | 1/2 ,5/2              | C    | J : L(pol u, l) = 1.                                                                                                                        |
| 2518.8 10               | 3/2+ 5/2+             | C    | $I^{\pi}$ · I (pold t) – 2                                                                                                                  |
| 2518.8 10               | $(23/2^{-})$          | C F  | J : $L(por(u,t)-2)$<br>$I^{\pi}$ : E2 or to $(10/2^{-})$ (M1+E2) or to $(21/2^{-})$ in (HI xnor)                                            |
| 3006.8.4                | $(25/2^{-})$          | F    | J E Z Y to $(17/2^{-})$ , $(M1+E2)$ Y to $(21/2^{-})$ in $(111, X11Y)$ .<br>$I^{\pi}$ : F2 y to $(21/2^{-})$ in (HI yny)                    |
| 3010.1.6                | (25/2)                | R    | J : EZ Y to (Z1/Z) in (III, XIIY).                                                                                                          |
| 3181.12.23              | $(25/2^{-})$          | Ē    | $J^{\pi}$ : E2 $\gamma$ to (21/2 <sup>-</sup> ). (M1+E2) $\gamma$ to (23/2 <sup>-</sup> ) in (HLxn $\gamma$ ).                              |
| $3348.21^{\#}.24$       | $(27/2^{-})$          | -    | $I^{\pi}$ : E2 $\gamma$ to $(25/2^{-})$                                                                                                     |
| 3381 0 3                | (27/2)                | F    | J. E2 y to $(25/2^{-})$ in (HI yng)                                                                                                         |
| 3623 83 25              | $(27/2^{-})$          | F    | $J^{\pi}$ : F2 $\gamma$ to $(23/2^{-})$ in (HI $\chi n\gamma$ )                                                                             |
| 3668 5 5                | $(29/2^{-})$          | Ē    | $I^{\pi}$ : E2 $\gamma$ to (25/2 <sup>-</sup> ) in (HI xn $\gamma$ ).                                                                       |
| 3762.7 4                | $(27/2^{-})$          | Ē    | $J^{\pi}$ : (E2) $\gamma$ to (25/2 <sup>-</sup> ) in (HLxn $\gamma$ ).                                                                      |
| 3804.8 5                | (29/2)                | E    | $J^{\pi}$ : d $\gamma$ to $(27/2^{-})$ in (HI.xn $\gamma$ ).                                                                                |
| 4378 4# 3               | $(31/2^{-})$          | F    | $I^{\pi}$ : F2 $\gamma$ to (27/2 <sup>-</sup> )                                                                                             |
| 4449.4 6                | $(33/2^{-})$          | Ē    | $J^{\pi}$ : E2 $\gamma$ to (29/2 <sup>-</sup> ) in (HL xn $\gamma$ ).                                                                       |
| 4571.95 25              | $(31/2^{-})$          | Ē    | $J^{\pi}$ : E2 $\gamma$ to (27/2 <sup>-</sup> ) in (HLxn $\gamma$ ).                                                                        |
| 4669.5 9                |                       | Е    |                                                                                                                                             |
| 4730.3 8                |                       | Е    |                                                                                                                                             |
| 5032.1 8                | $(37/2^{-})$          | E    | $J^{\pi}$ : E2 $\gamma$ to (33/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                       |
| 5254.4 <sup>#</sup> 3   | $(35/2^{-})$          | Е    | $J^{\pi}$ : E2 $\gamma$ to (31/2 <sup>-</sup> ).                                                                                            |
| 5446.8 4                | $(39/2^{-})$          | E    | $J^{\pi}$ : E2 $\gamma$ to (35/2 <sup>-</sup> ) in (HI.xn $\gamma$ ).                                                                       |
| 5449.3 11               | (41/2)                | E    | $J^{\pi}$ : $\gamma$ to $(37/2^{-})$ in (HI,xn $\gamma$ ).                                                                                  |
| 6003.9 6                | $(43/2^{-})$          | Е    | $J^{\pi}$ : E2 $\gamma$ to (39/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                       |
| 6054.1 8                |                       | E    |                                                                                                                                             |
| 6466.9 7                | $(45/2^{-})$          | Е    | $J^{\pi}$ : M1+E2 $\gamma$ to (43/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                    |
| 6513.2 6                | $(41/2^{-})$          | E    | $J^{\pi}$ : M1 $\gamma$ to (39/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                       |
| 6727.7 7                | $(43/2^{-})$          | E    | $J^{\pi}$ : Q $\gamma$ to (39/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                        |
| 6828.4 4                | $(43/2^{-})$          | E    | $J^{\pi}$ : E2 $\gamma$ to (39/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                       |
| 6936.4 5                | $(45/2^{-})$          | E    | $J^{n}$ : d $\gamma$ to (43/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                          |
| 6952.8 10               | $(47/2^{-})$          | E    | $J^{n}$ : d $\gamma$ to (45/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                          |
| 7025.3 7                | (43/2 <sup>-</sup> )  | E    | $J^{\alpha}$ : E2 $\gamma$ to (39/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).                                                                    |

# <sup>119</sup>Te Levels (continued)

| E(level) <sup>†</sup> | $\mathrm{J}^{\pi}$ | XREF | Comments                                                              |  |
|-----------------------|--------------------|------|-----------------------------------------------------------------------|--|
| 7258.6 7              |                    | E    |                                                                       |  |
| 7360.1 8              | $(45/2^{-})$       | Е    | $J^{\pi}$ : E2 $\gamma$ to $(41/2^{-})$ in (HI,xn $\gamma$ ).         |  |
| 7654.4 6              | $(47/2^{-})$       | Е    | $J^{\pi}$ : E2 $\gamma$ to (43/2 <sup>-</sup> ) in (HI,xn $\gamma$ ). |  |
| 7936.4 8              |                    | Е    |                                                                       |  |
| 7962.2 7              | $(45/2^{-})$       | Е    | $J^{\pi}$ : d $\gamma$ to (43/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).  |  |
| 8062.2 8              |                    | Е    |                                                                       |  |
| 8354.6 6              |                    | Е    |                                                                       |  |
| 8636.5 7              | $(47/2^{-})$       | Е    | $J^{\pi}$ : O $\gamma$ to (43/2 <sup>-</sup> ) in (HI,xn $\gamma$ ).  |  |
| 9067.7 8              |                    | Е    |                                                                       |  |
| 9383.4 9              | $(51/2^{-})$       | Е    | $J^{\pi}$ : O $\gamma$ to $(47/2^{-})$ in (HI,xn $\gamma$ ).          |  |
| 9555.5 10             |                    | Е    |                                                                       |  |
| 9698.7 9              | $(55/2^{-})$       | Е    |                                                                       |  |

<sup>†</sup> From a least-squares fit by the evaluators to the adopted  $E(\gamma's)$ . <sup>‡</sup> Band(A):  $\Delta J=1$  band built on 320.51-keV 5/2<sup>+</sup> level. <sup>#</sup> Band(B):  $\Delta J=2$  band built on 260.96-keV 11/2<sup>-</sup> level. <sup>@</sup> Band(C):  $\Delta J=2$  band built on 467.96-keV 9/2<sup>-</sup> level.

|                            | Adopted Levels, Gammas (continued)                                         |                                                     |                                                                    |                                       |                                                                                |                                  |              |                            |                                                                                                |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|----------------------------------|--------------|----------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
|                            | $\gamma$ <sup>(119</sup> Te)                                               |                                                     |                                                                    |                                       |                                                                                |                                  |              |                            |                                                                                                |  |  |  |  |
| E <sub>i</sub> (level)     | $\mathbf{J}_i^\pi$                                                         | $E_{\gamma}^{\ddagger}$                             | Iγ‡                                                                | $E_f$                                 | $\mathbf{J}_f^{\pi}$                                                           | Mult. <sup>#</sup>               | $\delta^{@}$ | $lpha^{\dagger}$           | Comments                                                                                       |  |  |  |  |
| 257.484                    | 3/2+                                                                       | 257.52 4                                            | 100                                                                | 0.0                                   | $1/2^{+}$                                                                      | M1+E2 <sup>&amp;</sup>           | +0.17 6      | 0.0512                     |                                                                                                |  |  |  |  |
| 320.506                    | 5/2+                                                                       | 63.09 4                                             | 49.2 24                                                            | 257.484                               | 3/2+                                                                           | (M1+E2) <sup>&amp;</sup>         | +0.12 12     | 2.6 3                      | B(M1)(W.u.)=0.0068 11; B(E2)(W.u.)<77 $I_{\gamma}$ : other: 57 3 in ( $\alpha$ ,2n $\gamma$ ). |  |  |  |  |
| 360.39                     | 7/2+                                                                       | 320.53 <i>4</i><br>39.95 <i>5</i>                   | 100 <i>4</i><br>100                                                | 0.0<br>320.506                        | 1/2 <sup>+</sup><br>5/2 <sup>+</sup>                                           | E2 <sup>b</sup><br>[M1+E2]       |              | 0.0312<br>29 <i>20</i>     | B(E2)(W.u.)=0.77 9                                                                             |  |  |  |  |
| 467.96<br>501.10<br>557.17 | 9/2 <sup>-</sup><br>7/2 <sup>-</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup> | 206.95 5<br>240.20 5<br>299.6 2<br>557.24 5         | 100<br>100<br>3.4 10<br>100 5                                      | 260.96<br>260.96<br>257.484<br>0.0    | 11/2 <sup>-</sup><br>11/2 <sup>-</sup><br>3/2 <sup>+</sup><br>1/2 <sup>+</sup> | (M1+E2) <sup>&amp;</sup><br>[E2] | -0.235 35    | 0.0932 <i>15</i><br>0.0804 |                                                                                                |  |  |  |  |
| 598.18                     | 5/0+                                                                       | 340.7 <sup>&amp;</sup> 2                            | 100                                                                | 257.484                               | $3/2^+$                                                                        |                                  |              | 27.14                      |                                                                                                |  |  |  |  |
| 033.80                     | 5/2                                                                        | 78.3 3<br>215 40 5                                  | 0.42 20                                                            | 337.17                                | 5/2°,5/2°                                                                      | [M1, E2]                         |              | 2.7 14                     |                                                                                                |  |  |  |  |
|                            |                                                                            | 378 40 5                                            | 9.4 4<br>14 8 7                                                    | 257 484                               | 3/2                                                                            | (M1+E2+E0)                       |              | 0.0314 15                  |                                                                                                |  |  |  |  |
|                            |                                                                            | 635.86.5                                            | 100 4                                                              | 0.0                                   | $1/2^+$                                                                        | $F2^{b}$                         |              | 0.0043 6                   |                                                                                                |  |  |  |  |
| 661.27                     | 7/2-                                                                       | 160.18 7<br>193.34 7<br>301.0 <i>1</i><br>340.76 5  | 26.7 <i>19</i><br>19.3 <i>23</i><br>11.5 <i>15</i><br>100 <i>4</i> | 501.10<br>467.96<br>360.39<br>320.506 | 7/2 <sup>-</sup><br>9/2 <sup>-</sup><br>7/2 <sup>+</sup><br>5/2 <sup>+</sup>   | [M1,E2]<br>[M1,E2]               |              | 0.25 7<br>0.14 <i>3</i>    |                                                                                                |  |  |  |  |
| 669.31                     | 7/2+                                                                       | 308.95 6                                            | 24.1 14                                                            | 360.39                                | 7/2+                                                                           | M1+E2+E0 <sup>b</sup>            |              | 0.0334 18                  |                                                                                                |  |  |  |  |
|                            |                                                                            | 348.82 <i>5</i><br>411.53 8                         | 100 5<br>11.4 9                                                    | 320.506<br>257.484                    | 5/2 <sup>+</sup><br>3/2 <sup>+</sup>                                           | M1+E2&                           | -0.27 25     | 0.0232                     |                                                                                                |  |  |  |  |
| 703.08<br>707.68<br>723.99 | $(7/2^+)$<br>$1/2^+$<br>$3/2^+, 5/2^+$                                     | 382.6 <sup>&amp;</sup> 3<br>707.67 9<br>363.57 6    | 100 <sup>&amp;</sup><br>100<br>42.6 <i>21</i>                      | 320.506<br>0.0<br>360.39              | 5/2 <sup>+</sup><br>1/2 <sup>+</sup><br>7/2 <sup>+</sup>                       | (M1+E2)                          | ≈-0.8        | ≈0.0182                    | δ: from γ(θ) in (α,2nγ) (1979Ha47).                                                            |  |  |  |  |
|                            |                                                                            | 403.51 <i>5</i><br>466.8 <i>2</i><br>724.1 <i>1</i> | 100 6<br>5.5 11<br>21 3                                            | 320.506<br>257.484<br>0.0             | 5/2 <sup>+</sup><br>3/2 <sup>+</sup><br>1/2 <sup>+</sup>                       | (M1) <sup>b</sup>                |              | 0.01602                    |                                                                                                |  |  |  |  |
| 743.08                     | 7/2 <sup>-</sup> ,9/2 <sup>-</sup>                                         | 275.0 <i>1</i><br>382.75 7<br>482.1 <i>1</i>        | 46 6<br>100 7<br>38 4                                              | 467.96<br>360.39<br>260.96            | 9/2 <sup>-</sup><br>7/2 <sup>+</sup><br>11/2 <sup>-</sup>                      |                                  |              |                            |                                                                                                |  |  |  |  |
| 766.60                     | 5/2-,7/2-                                                                  | 298.8 <i>4</i><br>505.6 <i>2</i>                    | 56 5<br>100 27                                                     | 467.96<br>260.96                      | 9/2 <sup>-</sup><br>11/2 <sup>-</sup>                                          |                                  |              |                            | $E_{\gamma}$ : not reported in <sup>119</sup> I $\varepsilon + \beta^+$ decay.                 |  |  |  |  |
| 771.7                      | 5/2-                                                                       | 514.2 <mark>&amp;</mark> 3                          | 100 <mark>&amp;</mark>                                             | 257.484                               | 3/2+                                                                           |                                  |              |                            | •                                                                                              |  |  |  |  |
| 813.31                     | 3/2+,5/2+                                                                  | 555.89 7<br>813.27 5                                | 55 <i>3</i><br>100 <i>5</i>                                        | 257.484<br>0.0                        | 3/2 <sup>+</sup><br>1/2 <sup>+</sup>                                           |                                  |              |                            |                                                                                                |  |  |  |  |
| 877.45                     | 3/2+,5/2+                                                                  | 557.2 1                                             | 100 9                                                              | 320.506                               | $5/2^+$                                                                        |                                  |              |                            |                                                                                                |  |  |  |  |
| 889.07                     | 3/2+,5/2+                                                                  | 253.10 5                                            | 16 4                                                               | 635.86                                | $5/2^{+}$                                                                      | [M1,E2]                          |              | 0.060 8                    |                                                                                                |  |  |  |  |

# $^{119}_{52}{ m Te}_{67}$ -6

From ENSDF

 $^{119}_{52}$ Te $_{67}$ -6

# $\gamma(^{119}\text{Te})$ (continued)

| $E_i$ (level) | ${ m J}^{\pi}_i$ | $E_{\gamma}^{\ddagger}$    | $I_{\gamma}^{\ddagger}$  | $E_f$          | $\mathrm{J}_f^\pi$      | Mult. <sup>#</sup>   | $\delta^{@}$ | $lpha^{\dagger}$ | Comments                                         |
|---------------|------------------|----------------------------|--------------------------|----------------|-------------------------|----------------------|--------------|------------------|--------------------------------------------------|
| 889.07        | 3/2+,5/2+        | 332.1 <i>1</i>             | 5.4 14                   | 557.17         | 3/2+,5/2+               |                      |              |                  |                                                  |
|               |                  | 528.73 9                   | 13.5 14                  | 360.39         | 7/2+                    |                      |              |                  |                                                  |
|               |                  | 568.7 1                    | 31.1 14                  | 320.506        | 5/2                     | b                    |              |                  |                                                  |
|               |                  | 631.70 6                   | 100 6                    | 257.484        | $3/2^+$                 | (M1) <sup>0</sup>    |              | 0.00533 8        |                                                  |
|               |                  | 889.00 6                   | 16.0 9                   | 0.0            | 1/2+                    |                      |              |                  |                                                  |
| 901.26        | $15/2^{-}$       | 640.3 <sup>°</sup> 1       | 100~                     | 260.96         | $11/2^{-}$              | E2                   |              | 0.00418 6        |                                                  |
| 945.92        | $(9/2^+)$        | 242.8 2                    | 16.7 <sup>&amp;</sup> 14 | 703.08         | $(7/2^+)$               | (M1+E2)              | -0.41 39     | 0.062 5          |                                                  |
|               |                  | 625.4 <mark>&amp;</mark> 2 | 100 <sup>&amp;</sup> 3   | 320.506        | $5/2^{+}$               | E2                   |              | 0.00445 7        |                                                  |
| 964.21        | 3/2+,5/2+        | 294.93 6                   | 9.4 7                    | 669.31         | $7/2^{+}$               |                      |              |                  |                                                  |
|               |                  | 406.93 6                   | 11.4 7                   | 557.17         | $3/2^+, 5/2^+$          |                      |              |                  |                                                  |
|               |                  | 643.8 1                    | 21 4                     | 320.506        | 5/2+                    |                      |              |                  |                                                  |
|               |                  | 706.74 6                   | 100 6                    | 257.484        | 3/2+                    |                      |              |                  |                                                  |
|               |                  | 964.2 1                    | 10.6 9                   | 0.0            | 1/2                     |                      |              |                  |                                                  |
| 979.96        | $(13/2^{-})$     | 512.0 <sup>°</sup> 3       | 55 <b>~</b> 3            | 467.96         | 9/2-                    |                      |              |                  | $I_{\gamma}$ : other: 21 7 in (HI,xn $\gamma$ ). |
|               |                  | 719.0 2                    | 100 <sup>&amp;</sup> 9   | 260.96         | $11/2^{-}$              | (M1+E2)              |              | 0.0035 4         |                                                  |
| 994.41        | 5/2-,7/2-        | 325.1 <sup>&amp;</sup> 2   | 100                      | 669.31         | 7/2+                    |                      |              |                  |                                                  |
| 1003.99       | $1/2^{+}$        | 280.0 1                    | 1.4 7                    | 723.99         | 3/2+,5/2+               |                      |              |                  |                                                  |
|               |                  | 446.81 <i>6</i>            | 17.5 11                  | 557.17         | $3/2^+, 5/2^+$          |                      |              |                  |                                                  |
|               |                  | 683.54 6                   | 35.6 17                  | 320.506        | 5/2+                    |                      |              |                  |                                                  |
|               |                  | 746.52 5                   | 30.5 16                  | 257.484        | 3/2+                    | 1                    |              |                  |                                                  |
|               |                  | 1003.97 6                  | 100 5                    | 0.0            | $1/2^{+}$               | M1(+E0) <sup>0</sup> |              |                  |                                                  |
| 1104.87       | $(7/2^+, 9/2^+)$ | 603.76 8                   | 100                      | 501.10         | 7/2-                    |                      |              |                  |                                                  |
| 1113.57       | 5/21             | 389.59 7                   | 52 4                     | 723.99         | 3/2 ,5/2                |                      |              |                  |                                                  |
|               |                  | 444.2 1                    | 11.1 10                  | 661 27         | 7/2*                    |                      |              |                  |                                                  |
|               |                  | 432.39 8                   | 32 U<br>29 3             | 635.86         | 7/2<br>5/2+             |                      |              |                  |                                                  |
|               |                  | 612.44.5                   | 100 6                    | 501 10         | $\frac{5}{2}$           |                      |              |                  |                                                  |
|               |                  | 753.11 6                   | 79 5                     | 360.39         | $7/2^+$                 |                      |              |                  |                                                  |
|               |                  | 793.10 7                   | 66 4                     | 320.506        | $5/2^+$                 |                      |              |                  |                                                  |
|               |                  | 855.94 7                   | 44 <i>3</i>              | 257.484        | 3/2+                    |                      |              |                  |                                                  |
|               |                  | 1113.7 <i>1</i>            | 34 <i>3</i>              | 0.0            | $1/2^{+}$               |                      |              |                  |                                                  |
| 1162.32       | 7/2-,9/2-        | 492.9 <i>3</i>             | 100 50                   | 669.31         | 7/2+                    |                      |              |                  |                                                  |
|               |                  | 661.23 9                   | 65 10                    | 501.10         | 7/2-                    |                      |              |                  |                                                  |
| 1104 70       |                  | 901.3 2                    | 48 10                    | 260.96         | 11/2-                   |                      |              |                  |                                                  |
| 1184.79       | 5/2 ,1/2*        | 716.77 7                   | 15 /                     | 467.96         | 9/2<br>5/2 <sup>+</sup> |                      |              |                  |                                                  |
|               |                  | 804.41 9                   | 100 11                   | 320.306        | 3/2"<br>2/2+            |                      |              |                  |                                                  |
| 1107 12       | (2/2+)           | 921.22                     | 1/4                      | 257.484        | 5/2<br>2/2+             | MILES Ech            |              | 0.00100.03       |                                                  |
| 1197.13       | $(3/2^{+})$      | 939.64 6<br>1197.1 2       | 100 5<br>13.7 25         | 257.484<br>0.0 | $\frac{3/2}{1/2^+}$     | $M1+E2+E0^{\circ}$   |              | 0.00188 23       |                                                  |

# $\gamma(^{119}\text{Te})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$           | $I_{\gamma}^{\ddagger}$    | $E_f$             | $\mathbf{J}_{f}^{\pi}$               | Mult. <sup>#</sup> | $\delta^{@}$ | $\alpha^{\dagger}$ | Comments                                                                                              |
|---------------|----------------------|-----------------------------------|----------------------------|-------------------|--------------------------------------|--------------------|--------------|--------------------|-------------------------------------------------------------------------------------------------------|
| 1197.71       | 3/2-,5/2,7/2         | 696.3 <i>6</i><br>877.20 <i>6</i> | 21 <i>21</i><br>100 6      | 501.10<br>320.506 | $7/2^{-}$<br>$5/2^{+}$               |                    |              |                    |                                                                                                       |
| 1201.50       | $(1/2, 3/2, 5/2^+)$  | 493.8 <i>3</i><br>1201.5 2        | 100 <i>50</i><br>35 8      | 707.68<br>0.0     | $1/2^+$<br>$1/2^+$                   |                    |              |                    |                                                                                                       |
| 1215.5        |                      | 747.5 <mark>&amp;</mark> 3        | 100 <mark>&amp;</mark>     | 467.96            | 9/2-                                 |                    |              |                    |                                                                                                       |
| 1280.83       | $(11/2^+)$           | 334.9 <mark>&amp;</mark> 1        | 44 <sup>&amp;</sup> 5      | 945.92            | (9/2+)                               | (M1+E2)            | -0.33 17     | 0.0259             |                                                                                                       |
|               |                      | 577.8 2                           | 100 2 5                    | 703.08            | $(7/2^+)$                            | E2                 |              | 0.00548 8          |                                                                                                       |
| 1296.1        | 2 12- 5 12+          | 524.4 <sup>&amp;</sup> 2          | <b>50 7</b>                | 771.7             | 5/2-                                 |                    |              |                    |                                                                                                       |
| 1370.86       | 3/2-,5/2+            | 663.20 9                          | 50 7                       | 707.68            | 1/2+                                 |                    |              |                    |                                                                                                       |
|               |                      | 869.97 9                          | 94 9                       | 501.10<br>220.506 | 1/2<br>5/2+                          |                    |              |                    |                                                                                                       |
| 1373 29       |                      | 484.2.1                           | 38.4                       | 889.07            | 3/2<br>3/2+ 5/2+                     |                    |              |                    |                                                                                                       |
| 1373.27       |                      | 111592                            | 100 13                     | 257 484           | 3/2+,5/2                             |                    |              |                    |                                                                                                       |
| 1445.61       | $3/2^+, 5/2^+$       | 721.8 2                           | 65 21                      | 723.99            | $3/2^+, 5/2^+$                       |                    |              |                    |                                                                                                       |
|               |                      | 1085.3 2                          | 62 12                      | 360.39            | 7/2+                                 |                    |              |                    |                                                                                                       |
|               |                      | 1188.0 <i>1</i>                   | 88 24                      | 257.484           | 3/2+                                 |                    |              |                    |                                                                                                       |
|               | <b>T</b> (0)         | 1445.8 2                          | 100 15                     | 0.0               | 1/2+                                 |                    |              |                    |                                                                                                       |
| 1512.88       | 5/2+                 | 955.7 1                           | 100 9                      | 557.17            | $3/2^+, 5/2^+$                       |                    |              |                    |                                                                                                       |
|               |                      | 1152.5 2                          | 4/0<br>67.6                | 360.39            | 1/2 <sup>+</sup><br>3/2 <sup>+</sup> |                    |              |                    |                                                                                                       |
| 1528 31       | $(1/2^+ 3/2 5/2^+)$  | 414.6 1                           | 63 14                      | 1113 57           | $5/2^+$                              |                    |              |                    |                                                                                                       |
| 1020.01       | (1/2 ,3/2,3/2 )      | 524.5 1                           | 100 10                     | 1003.99           | $1/2^+$                              |                    |              |                    |                                                                                                       |
|               |                      | 820.3 <i>3</i>                    | 73 24                      | 707.68            | $1/2^+$                              |                    |              |                    |                                                                                                       |
| 1530.55       | 3/2+,5/2+            | 417.2 <i>I</i>                    | 5.7 10                     | 1113.57           | 5/2+                                 |                    |              |                    |                                                                                                       |
|               |                      | 526.15 <sup>d</sup> 8             | 13.9 10                    | 1003.99           | $1/2^{+}$                            |                    |              |                    |                                                                                                       |
|               |                      | 566.5 2                           | 5.9 10                     | 964.21            | 3/2+,5/2+                            |                    |              |                    |                                                                                                       |
|               |                      | 653.4 1                           | 5.2 8                      | 877.45            | $3/2^+, 5/2^+$                       |                    |              |                    |                                                                                                       |
|               |                      | 806.62 7                          | 17.8 12                    | 723.99            | 3/2+,5/2+                            |                    |              |                    |                                                                                                       |
|               |                      | 822.9 1<br>860.0 <mark>C</mark> 1 | 10.0 17<br>$6 7^{\circ} 8$ | /0/.08            | $1/2^{+}$<br>$7/2^{+}$               |                    |              |                    |                                                                                                       |
|               |                      | 973 37 5                          | 100.6                      | 557 17            | $3/2^+ 5/2^+$                        |                    |              |                    |                                                                                                       |
|               |                      | 1210.04 6                         | 37 2                       | 320.506           | $5/2^+$ , $5/2^+$                    |                    |              |                    |                                                                                                       |
|               |                      | 1273.06 6                         | 29.8 15                    | 257.484           | 3/2+                                 |                    |              |                    |                                                                                                       |
|               |                      | 1530.28 9                         | 10.7 7                     | 0.0               | $1/2^{+}$                            |                    |              |                    |                                                                                                       |
| 1586.43       | $(13/2^+)$           | 305.6 <sup>&amp;</sup> 2          | 22 <mark>&amp;</mark> 2    | 1280.83           | $(11/2^+)$                           | (M1+E2)            | -1.0 6       | 0.0344 15          |                                                                                                       |
|               |                      | 640.5 <sup>&amp;</sup> 2          | 100 <sup>&amp;</sup> 15    | 945.92            | (9/2+)                               | E2                 |              | 0.00418 6          |                                                                                                       |
| 1598.67       | (17/2 <sup>-</sup> ) | 618.7 <mark>&amp;</mark> 2        | 100 <sup>&amp;</sup> 3     | 979.96            | $(13/2^{-})$                         | E2                 |              | 0.00457 7          |                                                                                                       |
|               |                      | 697.4 <sup>&amp;</sup> 2          | 38 <sup>&amp;</sup> 4      | 901.26            | 15/2-                                | (M1+E2)            | ≈-0.8        | 0.00388            | I <sub>γ</sub> : other: 92 9 in (HI,xnγ).<br>δ: from $\gamma(\theta)$ in ( $\alpha$ ,2nγ) (1979Ha47). |

 $\infty$ 

# $\gamma(^{119}\text{Te})$ (continued)

| E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                           | $E_{\gamma}^{\ddagger}$                                                          | $I_{\gamma}^{\ddagger}$                                                                                                  | $E_f$                                                                | $\mathrm{J}_f^\pi$                                                                                                                 | Mult. <sup>#</sup>    | $\delta^{@}$ | $\alpha^{\dagger}$ |
|------------------------|----------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|--------------------|
| 1618.96<br>1624.25     | (19/2 <sup>-</sup> )<br>3/2,5/2 <sup>+</sup> | 717.7 <sup>&amp;</sup> 2<br>660.05 9<br>1303.7 2<br>1624 2 2                     | 100 <sup>&amp;</sup><br>92 9<br>75 25<br>100 17                                                                          | 901.26<br>964.21<br>320.506                                          | 15/2 <sup>-</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>1/2 <sup>+</sup>                                    | (E2)                  |              | 0.00314 5          |
| 1632.05                | (1/2,3/2,5/2 <sup>+</sup> )                  | 1374.6 2<br>1632.0 2                                                             | 100 22<br>88 9                                                                                                           | 257.484<br>0.0                                                       | $3/2^+$<br>$1/2^+$                                                                                                                 |                       |              |                    |
| 1674.23                | 5/2+                                         | 709.9 <i>1</i><br>785.11 8<br>860.9 <sup>c</sup> <i>1</i><br>967.0 2             | 43 <i>43</i><br>27 2<br>16 <sup>c</sup> 2<br>43 9                                                                        | 964.21<br>889.07<br>813.31<br>707.68                                 | 3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>1/2 <sup>+</sup> | M1+E2+E0 <sup>b</sup> |              | 0.0036 5           |
|                        |                                              | 1038.5 <i>1</i><br>1117.3 <i>4</i><br>1353.72 <i>5</i><br>1674 1 <i>1</i>        | 39 <i>3</i><br>13 <i>5</i><br>100 <i>5</i><br>15 2                                                                       | 635.86<br>557.17<br>320.506                                          | 5/2 <sup>+</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                         | M1+E2+E0 <sup>b</sup> |              | 0.00151 18         |
| 1729.21                | 3/2,5/2+                                     | 615.5 <i>I</i><br>725.5 2<br>840.3 <i>I</i><br>1729.1 <i>I</i>                   | 13 2<br>79 16<br>87 16<br>59 11                                                                                          | 1113.57<br>1003.99<br>889.07                                         | $5/2^+$<br>$1/2^+$<br>$3/2^+, 5/2^+$<br>$1/2^+$                                                                                    |                       |              |                    |
| 1739.05                | 3/2,5/2+                                     | 735.0 2<br>1103.3 <i>I</i><br>1418.51 6<br>1481 5 <i>I</i>                       | 20 5<br>41 3<br>100 5<br>24 3                                                                                            | 1003.99<br>635.86<br>320.506<br>257.484                              | $1/2^+$<br>$5/2^+$<br>$5/2^+$<br>$3/2^+$                                                                                           |                       |              |                    |
| 1834.91                | (5/2 <sup>-</sup> ,7/2 <sup>+</sup> )        | 946.0 2<br>957.5 1<br>1199.1 2<br>1277.9 1<br>1366.93 9<br>1514.25 9<br>1577.2 2 | 13.8 <i>19</i><br>29.4 <i>25</i><br>18.8 <i>25</i><br>13.1 <i>19</i><br>31.3 <i>25</i><br>100 <i>7</i><br>16.9 <i>25</i> | 889.07<br>877.45<br>635.86<br>557.17<br>467.96<br>320.506<br>257.484 | $5/2^{+}, 5/2^{+}$ $3/2^{+}, 5/2^{+}$ $5/2^{+}, 5/2^{+}$ $3/2^{+}, 5/2^{+}$ $9/2^{-}$ $5/2^{+}, 5/2^{+}$ $3/2^{+}$                 |                       |              |                    |
| 1889.0                 |                                              | 592.9 <sup>&amp;</sup> 3                                                         | 100                                                                                                                      | 1296.1                                                               |                                                                                                                                    |                       |              |                    |
| 1939.83                | $(15/2^+)$                                   | 353.4 <sup>x</sup> 2                                                             | $29^{\circ} 5$                                                                                                           | 1586.43                                                              | $(13/2^+)$                                                                                                                         |                       |              | 0.00200 (          |
| 2024.55                | 3/2+,5/2,7/2+                                | 659.0 <sup>2</sup> 2<br>1664.2 2<br>1767.0 2                                     | 100 9<br>100 <i>16</i><br>89 <i>11</i>                                                                                   | 1280.83<br>360.39<br>257.484                                         | $(11/2^+)$<br>$7/2^+$<br>$3/2^+$                                                                                                   | (E2)                  |              | 0.00389 6          |
| 2078.45                | 3/2+,5/2+                                    | 1074.4 2<br>1370.66 8<br>1718.2 <i>I</i><br>1821.2 <i>3</i>                      | 23 5<br>100 2<br>41 6<br>30 6                                                                                            | 1003.99<br>707.68<br>360.39<br>257.484                               | 1/2+<br>1/2+<br>7/2+<br>3/2+                                                                                                       |                       |              |                    |
| 2101.87                | $(21/2^{-})$                                 | 482.9 <sup>&amp;</sup> 1                                                         | 95.3 <sup>&amp;</sup> 25                                                                                                 | 1618.96                                                              | (19/2 <sup>-</sup> )                                                                                                               | (M1+E2)               | -0.36 7      | 0.01010            |

9

# $\gamma(^{119}\text{Te})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$     | $E_{\gamma}^{\ddagger}$          | $I_{\gamma}^{\ddagger}$    | $E_f$            | $\mathrm{J}_f^\pi$ | Mult. <sup>#</sup> | $\delta^{@}$ | $\alpha^{\dagger}$ | $I_{(\gamma+ce)}$ | Comments                                                         |
|------------------------|------------------------|----------------------------------|----------------------------|------------------|--------------------|--------------------|--------------|--------------------|-------------------|------------------------------------------------------------------|
| 2101.87                | $(21/2^{-})$           | 503.2 <sup>&amp;</sup> 1         | 100 <mark>&amp;</mark> 7   | 1598.67          | $(17/2^{-})$       | (E2)               |              | 0.00801 12         |                   |                                                                  |
| 2105.95                | $(3/2^+, 5/2, 7/2^+)$  | 1217.0 2                         | 23 4                       | 889.07           | $3/2^+, 5/2^+$     |                    |              |                    |                   |                                                                  |
|                        |                        | 1382.0 2                         | 19 4                       | 723.99           | $3/2^+, 5/2^+$     |                    |              |                    |                   |                                                                  |
|                        |                        | 1436.5 <i>1</i>                  | 29 <i>3</i>                | 669.31           | 7/2+               |                    |              |                    |                   |                                                                  |
|                        |                        | 1470.3 <i>1</i>                  | 39 4                       | 635.86           | 5/2+               |                    |              |                    |                   |                                                                  |
|                        |                        | 1548.81 7                        | 100 6                      | 557.17           | $3/2^+, 5/2^+$     |                    |              |                    |                   |                                                                  |
| 2112.00                |                        | 1785.33 7                        | 85 5                       | 320.506          | 5/2+               |                    |              |                    |                   |                                                                  |
| 2113.09                | 3/2',5/2,7/2'          | 1444.1 2                         | 100 16                     | 669.31           | 1/2 <sup>+</sup>   |                    |              |                    |                   |                                                                  |
|                        |                        | 14//.4 2                         | 50 13                      | 033.80<br>557.17 | $\frac{5}{2}$      |                    |              |                    |                   |                                                                  |
|                        |                        | 1330.4 2                         | 44 <i>10</i><br>34 7       | 320 506          | 5/2 ,5/2<br>5/2+   |                    |              |                    |                   |                                                                  |
|                        |                        | 1855.1 3                         | 44 7                       | 257.484          | $3/2^+$            |                    |              |                    |                   |                                                                  |
| 2272.46                | $(23/2^{-})$           | 170.6 <mark>&amp;</mark> 1       | 34 <sup>&amp;</sup> 1      | 2101.87          | $(21/2^{-})$       | (M1+E2)            | -0.045 45    | 0.1537 23          |                   |                                                                  |
|                        |                        | 653.5 <mark>&amp;</mark> 2       | 100 <sup>&amp;</sup> 4     | 1618.96          | $(19/2^{-})$       | E2                 |              | 0.00397 6          |                   |                                                                  |
| 2302.77                | $(23/2^{-}, 25/2^{-})$ | 200.9 <sup>&amp;</sup> 1         | 100 <mark>&amp;</mark>     | 2101.87          | $(21/2^{-})$       | (M1+E2)            | -0.045 45    | 0.0986 15          |                   | $\delta$ : from $\gamma(\theta)$ in (α,2n $\gamma$ ) (1979Ha47). |
| 2629.12                | $(23/2^{-})$           | 356.6 <sup>a</sup> 5             | 30 <sup>a</sup> 6          | 2272.46          | $(23/2^{-})$       | M1+E2              |              | 0.0221 4           |                   |                                                                  |
|                        |                        | 527.1 <sup>a</sup> 5             | 18 <sup>a</sup> 3          | 2101.87          | $(21/2^{-})$       |                    |              |                    |                   |                                                                  |
|                        |                        | 1010.2 <sup><i>a</i></sup> 2     | 100 <sup>a</sup> 10        | 1618.96          | $(19/2^{-})$       | E2                 |              | 0.00141 2          |                   |                                                                  |
| 3006.8                 | $(25/2^{-})$           | 734.5 <sup>a</sup> 7             | 21 <sup><i>a</i></sup> 7   | 2272.46          | $(23/2^{-})$       |                    |              |                    |                   |                                                                  |
|                        |                        | 904.8 <sup><i>a</i></sup> 5      | 100 <sup><i>a</i></sup> 20 | 2101.87          | $(21/2^{-})$       | E2                 |              | 0.00181 3          |                   |                                                                  |
| 3010.1                 |                        | 908.2 <sup>&amp;</sup> 5         | 100 <sup>&amp;</sup>       | 2101.87          | $(21/2^{-})$       |                    |              |                    |                   |                                                                  |
| 3181.12                | $(25/2^{-})$           | 552.1 <sup>a</sup> 5             | 36 <sup>a</sup> 8          | 2629.12          | $(23/2^{-})$       | M1+E2              |              | 0.0068 6           |                   |                                                                  |
|                        |                        | 908.6 <sup><i>a</i></sup> 5      | 47 <sup>a</sup> 10         | 2272.46          | $(23/2^{-})$       | M1+E2              |              | 0.0020 3           |                   |                                                                  |
|                        |                        | 1079.2 <sup><i>a</i></sup> 2     | 100 <sup><i>a</i></sup> 10 | 2101.87          | $(21/2^{-})$       | E2                 |              | 0.00123 2          |                   |                                                                  |
| 3348.21                | $(27/2^{-})$           | 719.0 <sup>a</sup>               | 11 <sup><i>a</i></sup> 2   | 2629.12          | $(23/2^{-})$       |                    |              |                    |                   | $E_{\gamma}$ : $E_{\gamma}$ determined from level energy.        |
|                        |                        | 1075.8 <sup><i>a</i></sup> 2     | 100 <sup><i>a</i></sup> 10 | 2272.46          | $(23/2^{-})$       | E2                 |              | 0.00123 2          |                   |                                                                  |
| 3381.9                 | (27/2)                 | 200.8 <sup>a</sup> 2             | 1004                       | 3181.12          | $(25/2^{-})$       | D                  |              |                    |                   |                                                                  |
| 3623.83                | (27/2)                 | 442.5 <sup>d</sup> 7             | 8 <sup>4</sup> 2           | 3181.12          | (25/2)             | 50                 |              | 0.00146.32         | 1                 |                                                                  |
| 2669 5                 | (20/2-)                | 994. $\int_{-\infty}^{\infty} 2$ | $100^{a}$ 10               | 2029.12          | (23/2)             | E2                 |              | 0.00146 32         | 1                 |                                                                  |
| 3008.3                 | (29/2)                 | $280.4^{\circ}$ /                | $\frac{1}{7a}$             | 2101.12          | (27/2)             |                    |              |                    |                   |                                                                  |
|                        |                        | $48/.5^{-7}/$                    | 1004 20                    | 2006.9           | (25/2)             | E2                 |              | 0.00295 6          |                   |                                                                  |
| 2762 7                 | $(27/2^{-})$           | $1122.6^{a}$ 5                   | $100^{-20}$                | 2620.12          | (23/2)             | E2<br>(E2)         |              | 0.005850           |                   | Ly intensity includes that of other                              |
| 5702.7                 | (27/2)                 | 1155.0 5                         | 100                        | 2029.12          | (23/2)             | (E2)               |              | 0.00111 2          |                   | transition (feeding to $43/2^{-1}$ state).                       |
| 3804.8                 | (29/2)                 | 422.8 <sup><i>a</i></sup> 5      | 100 <sup><i>a</i></sup>    | 3381.9           | (27/2)             | D                  |              |                    |                   |                                                                  |
| 4378.4                 | $(31/2^{-})$           | 1030.2 <sup><i>a</i></sup> 2     | 100 <sup><i>a</i></sup>    | 3348.21          | $(27/2^{-})$       | E2                 |              | 0.00136 2          |                   |                                                                  |
| 4449.4                 | (33/2-)                | 780.8 <sup>a</sup> 5             | 100 <sup><i>a</i></sup>    | 3668.5           | $(29/2^{-})$       | E2                 |              | 0.00255 4          |                   |                                                                  |
| 4571.95                | $(31/2^{-})$           | 193.5 <mark>a</mark> 7           | 10 <sup>a</sup> 4          | 4378.4           | $(31/2^{-})$       |                    |              |                    |                   |                                                                  |

10

# $^{119}_{52}$ Te $_{67}$ -10

# $\gamma(^{119}\text{Te})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$      | $I_{\gamma}^{\ddagger}$    | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\alpha^{\dagger}$ |
|------------------------|----------------------|------------------------------|----------------------------|------------------|----------------------|--------------------|--------------------|
| 4571.95                | $(31/2^{-})$         | 767.1 <sup><i>a</i></sup> 7  | 4 <sup><i>a</i></sup> 4    | 3804.8           | (29/2)               |                    |                    |
|                        | (- / /               | 809.2 <sup><i>a</i></sup> 7  | 20 <b>a</b> 6              | 3762.7           | $(27/2^{-})$         |                    |                    |
|                        |                      | 948.1 <sup>a</sup> 2         | 85 <mark>a</mark> 9        | 3623.83          | $(27/2^{-})$         | E2                 | 0.00163 3          |
|                        |                      | 1223.8 <sup><i>a</i></sup> 2 | 100 <b>a</b> 10            | 3348.21          | $(27/2^{-})$         | E2                 | 0.00095 2          |
| 4669.5                 |                      | 864.7 <sup>a</sup> 7         | 100 <sup><i>a</i></sup>    | 3804.8           | (29/2)               |                    |                    |
| 4730.3                 |                      | 280.5 <sup>a</sup> 7         |                            | 4449.4           | $(33/2^{-})$         |                    |                    |
| 5032.1                 | $(37/2^{-})$         | 582.7 <mark>a</mark> 5       | 100 <sup>a</sup>           | 4449.4           | $(33/2^{-})$         | E2                 | 0.00536 8          |
| 5254.4                 | $(35/2^{-})$         | 682.5 <sup>a</sup> 2         | 100 <sup>a</sup> 10        | 4571.95          | $(31/2^{-})$         | E2                 | 0.00356 5          |
|                        |                      | 876.0 <sup>a</sup> 2         | 91 <sup>a</sup> 9          | 4378.4           | $(31/2^{-})$         | E2                 | 0.00195 3          |
| 5446.8                 | $(39/2^{-})$         | 192.4 <sup>a</sup> 2         | 100 <sup><i>a</i></sup> 5  | 5254.4           | $(35/2^{-})$         | E2                 | 0.1712             |
| 5449.3                 | (41/2)               | 417.2 <sup>a</sup> 7         | 100 <sup>a</sup>           | 5032.1           | $(37/2^{-})$         |                    |                    |
| 6003.9                 | $(43/2^{-})$         | 556.9 <sup>a</sup> 5         | 100 <sup><i>a</i></sup>    | 5446.8           | $(39/2^{-})$         | E2                 | 0.00605 9          |
| 6054.1                 |                      | 1323.5 <sup>a</sup> 7        |                            | 4730.3           |                      |                    |                    |
| 6466.9                 | $(45/2^{-})$         | 462.8 <sup>a</sup> 5         | 100 <sup><i>a</i></sup>    | 6003.9           | $(43/2^{-})$         | M1+E2              | 0.0108 7           |
| 6513.2                 | $(41/2^{-})$         | 1066.5 <sup>a</sup> 5        | 100 <sup>a</sup>           | 5446.8           | $(39/2^{-})$         | M1                 | 0.0015 82          |
| 6727.7                 | $(43/2^{-})$         | 1281.1 <sup>a</sup> 7        |                            | 5446.8           | $(39/2^{-})$         | Q                  |                    |
| 6828.4                 | $(43/2^{-})$         | 1381.6 <sup>a</sup> 2        | 100 <sup>a</sup>           | 5446.8           | $(39/2^{-})$         | E2                 | 0.00078 1          |
| 6936.4                 | $(45/2^{-})$         | 108.6 <sup><i>a</i></sup> 5  |                            | 6828.4           | $(43/2^{-})$         | D                  |                    |
|                        |                      | 208.8 <sup><i>a</i></sup> 7  |                            | 6727.7           | $(43/2^{-})$         |                    |                    |
|                        |                      | 423.5 <sup>a</sup> 7         |                            | 6513.2           | $(41/2^{-})$         |                    |                    |
|                        |                      | 469.0 <sup>a</sup> 7         |                            | 6466.9           | $(45/2^{-})$         |                    |                    |
|                        |                      | 882.0 <sup><i>a</i></sup> 7  | _                          | 6054.1           |                      |                    |                    |
| 6952.8                 | $(47/2^{-})$         | 485.9 <sup>a</sup> 7         | 100 <b>a</b>               | 6466.9           | $(45/2^{-})$         | D                  |                    |
| 7025.3                 | $(43/2^{-})$         | 1578.4 <sup><i>a</i></sup> 7 | 100 <sup><i>a</i></sup>    | 5446.8           | $(39/2^{-})$         | E2                 | 0.00068 1          |
| 7258.6                 |                      | 430.3 <sup><i>a</i></sup> 7  | ~                          | 6828.4           | $(43/2^{-})$         |                    |                    |
| 7360.1                 | $(45/2^{-})$         | 846.9 <sup><i>a</i></sup> 5  | 100 <sup><i>a</i></sup>    | 6513.2           | $(41/2^{-})$         | E2                 | 0.00211 3          |
| 7654.4                 | $(47/2^{-})$         | 395.9 <sup><i>a</i></sup> 7  |                            | 7258.6           |                      |                    |                    |
|                        |                      | 629 <sup><i>a</i></sup> 1    | 37 <sup>4</sup> 19         | 7025.3           | $(43/2^{-})$         |                    |                    |
|                        |                      | 717.9 <sup><i>a</i></sup> 7  |                            | 6936.4           | $(45/2^{-})$         |                    |                    |
|                        |                      | 825.9 <sup><i>a</i></sup> 7  | 100 <sup><i>a</i></sup> 19 | 6828.4           | $(43/2^{-})$         | E2                 | 0.00223 4          |
| 7936.4                 |                      | 911.1 <sup><i>a</i></sup> 7  | 100 <sup>4</sup>           | 7025.3           | $(43/2^{-})$         |                    |                    |
| 7962.2                 | $(45/2^{-})$         | 1133.9 <sup><i>a</i></sup> 7 |                            | 6828.4           | $(43/2^{-})$         | D                  |                    |
| 8062.2                 |                      | 1233.8 <sup><i>a</i></sup> 7 |                            | 6828.4           | $(43/2^{-})$         |                    |                    |
| 8354.6                 |                      | 392.5 <sup><i>u</i></sup> 7  |                            | 7962.2           | $(45/2^{-})$         |                    |                    |
|                        |                      | 418.2 <sup>4</sup> 7         | 29 <sup>4</sup> 9          | 7936.4           |                      | (E2)               | 0.01370            |
| 0.62.6.5               | (17/2-)              | 700.14 5                     | 100 <sup>er</sup> 20       | 7654.4           | $(47/2^{-})$         |                    |                    |
| 8636.5                 | $(4^{7}/2^{-})$      | 6/4.4 <sup>4</sup> 7         |                            | 7962.2           | $(45/2^{-})$         | 0                  |                    |
|                        |                      | 1808.2 <sup>a</sup> 7        |                            | 6828.4           | $(43/2^{-})$         | Q                  |                    |

11

# $\gamma$ <sup>(119</sup>Te) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$ <sup>‡</sup> | $I_{\gamma}^{\ddagger}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> |
|---------------|----------------------|---------------------------|-------------------------|--------|----------------------|--------------------|
| 9067.7        |                      | 713.0 <sup>a</sup> 5      | 100 <sup><i>a</i></sup> | 8354.6 |                      |                    |
| 9383.4        | $(51/2^{-})$         | 747.1 <sup>a</sup> 7      | a                       | 8636.5 | $(47/2^{-})$         | Q                  |
| 9555.5        |                      | 487.7 <sup>a</sup>        |                         | 9067.7 |                      |                    |
| 9698.7        | $(55/2^{-})$         | 143.1 <sup>a</sup> 7      |                         | 9555.5 |                      |                    |
|               |                      | 315.4 <sup>a</sup> 7      |                         | 9383.4 | $(51/2^{-})$         | Q                  |
|               |                      | 630.9 <sup>a</sup> 7      |                         | 9067.7 |                      | Q                  |

<sup>†</sup> Additional information 2. <sup>‡</sup> From <sup>119</sup>I  $\varepsilon$  decay, except as noted. <sup>#</sup> From (HI,xn $\gamma$ ), except as noted.

<sup>@</sup> From the compilation by 1980Kr22 based on the results of  $\gamma(\theta)$  in  $(\alpha, 2n\gamma)$ , except as noted.

& From  $(\alpha, 2n\gamma)$ .

<sup>*a*</sup> From (HI,xn $\gamma$ ). <sup>*b*</sup> From <sup>119</sup>I  $\varepsilon$  decay.

<sup>c</sup> Multiply placed with undivided intensity.

<sup>d</sup> Placement of transition in the level scheme is uncertain.

16.05 h 5

# Adopted Levels, Gammas

# Level Scheme

Intensities: Relative photon branching from each level

| (55/2-)                         |          | 9698.7  |
|---------------------------------|----------|---------|
|                                 |          | 9555.5  |
| (51/2 <sup>-</sup> )            |          | 9383.4  |
|                                 |          |         |
|                                 |          | 9067.7  |
|                                 |          |         |
|                                 |          |         |
| (47/2 <sup>-</sup> )            |          | 8636.5  |
|                                 |          |         |
|                                 |          | 8354.6  |
|                                 |          | 8062.2  |
| (45/2-)                         |          | 7962.2  |
|                                 |          | 7936.4  |
| (47/2-)                         | ।        | 7654.4  |
| <u> </u>                        |          |         |
| (45/2-)                         |          | 7360.1  |
|                                 |          | 7258.6  |
| (43/2 <sup>-</sup> )            |          | 7025.3  |
| $\frac{(47/2^{-})}{(45/2^{-})}$ |          | 6952.8  |
| $\frac{(13/2^{-})}{(43/2^{-})}$ |          | 6828.4  |
| (43/2 <sup>-</sup> )            |          | 6727.7  |
| (41/2 <sup>-</sup> )            | <b>+</b> | 6513.2  |
| (45/2 <sup>-</sup> )            |          | 6466.9  |
|                                 |          |         |
|                                 |          | 6054.1  |
| (43/2 <sup>-</sup> )            |          | 6003.9  |
|                                 | 8.8      |         |
|                                 |          |         |
| (41/2)                          |          | 5449.3  |
| (39/2 <sup>-</sup> )            |          | 5446.8  |
| (35/2-)                         |          | 5254.4  |
| (37/2-)                         |          | 5032.1  |
| ()                              |          | 5052.1  |
|                                 |          | 4730.3  |
|                                 |          | 4669.5  |
| (31/2-)                         |          | 4571.95 |
| $\frac{(33/2^{-})}{(21/2^{-})}$ |          | 4449.4  |
| (31/2)                          |          | 43/8.4  |
|                                 |          |         |
|                                 |          |         |
| (29/2)                          |          | 3804.8  |
|                                 |          |         |
| 1/2+                            |          | 0.0     |
|                                 | 110      |         |

#### Level Scheme (continued)

Intensities: Relative photon branching from each level



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given





#### Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$  Decay (Uncertain)



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



<sup>119</sup><sub>52</sub>Te<sub>67</sub>

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



