Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 20-Jul-2015

 $Q(\beta^{-})=12190 \text{ SY}; S(n)=4650 \text{ SY}; S(p)=15130 \text{ CA}; Q(\alpha)=-11440 \text{ SY}$ 2012Wa38,1997Mo25

Estimated uncertainties (2012Wa38): 590 for $Q(\beta^-)$, 640 for S(n), 710 for $Q(\alpha)$.

 $Q(\beta^{-})$, S(n), $Q(\alpha)$ from 2012Wa38; S(p) from 1997Mo25.

 $Q(\beta^-n)=8820\ 590$, $S(2n)=8130\ 640$ (syst,2012Wa38). $S(2p)=32820\ (1997Mo25$,theory).

2010Oh02: ¹¹⁹Tc nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹¹⁹Tc nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 3 counts were assigned to ¹¹⁹Tc isotope. (Q=charge state).

2015Lo04: ¹¹⁹Tc nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10¹⁰ ions/s. Identification of ¹¹⁹Tc was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹¹⁹Tc isotope was measured from the correlated ion-β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

¹¹⁹Tc Levels

E(level) $T_{1/2}$ Comments $\frac{\text{Comments}}{0}$ 22 ms 3 $\frac{\%\beta^-=100; \%\beta^-\text{n=?}; \%\beta^-\text{2n=?}}{\text{Theoretical T}_{1/2}=25.1 \text{ ms}, \%\beta^-\text{n=32.0}, \%\beta^-\text{2n=0.12 (2003Mo09)}.}$ Measured σ =24 pb (2010Oh02), systematic uncertainty≈40%. Probability of misidentification of ^{119}Tc isotope<0.001% (2010Oh02).

E(level): measured half-life is assumed to correspond to the ground state of ^{119}Tc . $J^{\pi}: 3/2^- \text{ from systematic trends (2012Au07), } 5/2^+ \text{ from theoretical considerations (1997Mo25)}.$ $T_{1/2}: \text{ measured by } 2015\text{Lo04 from (implanted ions)}\beta \text{ correlated curves in time and position using maximum likelihood method. See } 2015\text{Lo04 for comparison of their experimental value with theoretical values.}$