¹¹⁹In β^- decay (18.0 min) 1973Ra17

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	D. M. Symochko, E. Browne, J. K. Tuli	NDS 110,2945 (2009)	1-Dec-2008	

Parent: ¹¹⁹In: E=311.37 3; $J^{\pi}=1/2^{-}$; $T_{1/2}=18.0 \text{ min } 3$; $Q(\beta^{-})=2363 8$; $\%\beta^{-}$ decay=95.6

Additional information 1. From 1973Ra17. See ¹¹⁹In β^- decay (2.4 min) for experimental details.

Others: 1976Sc30, 1972Ja31 (semi γ, x).

¹¹⁹Sn Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}
0	1/2+	stable
23.868 10	3/2+	
920.49 15	$3/2^{+}$	
921.39 <i>15</i>	5/2+	
1089.44 6	$5/2^{+}$	
1187.73 6	$3/2^+, 5/2^+$	
1249.71 5	$1/2^{+}$	
1354.0 9	5/2+	

 † From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1320 8) (1425 8) (1487 8)	1354.0 1249.71 1187.73	0.009 0.16 0.11	9.8 ¹ 7.9 8.1	av $\mathcal{E}\beta$ =493 4 av $\mathcal{E}\beta$ =528 4 av $\mathcal{E}\beta$ =555 4
(1585 8) (1753 8) (1754 8)	1089.44 921.39 920.49	0.27 0.030 0.030	8.7 ¹ 9.9 ¹ 9.0	av $E\beta = 604$ 4 av $E\beta = 677$ 4 av $E\beta = 673$ 4
(2651-8)	23.868	35	6.6	av $E\beta$ =1083 4 I β ⁻ : from I β ranging from 6% to 62% for log <i>ft</i> =6.9 5 deduced from those for β ⁻ feeding from 1/2 ⁻ parent to 3/2 ⁺ in decay of neighboring In isotopes (¹¹⁵ In: 7.35 6, ¹¹⁷ In: 6.85 5, ¹²¹ In: 6.7 3).
(2674 8)	0	64	6.4	av E β =1094 4 I β^- : from $\ge 21\%$ for log <i>ft</i> =6.4 4 deduced from those for β^- feeding from 1/2 ⁻ parent to 1/2 ⁺ in decay of neighboring In isotopes (¹¹⁵ In: 6.68 6, ¹¹⁷ In: 6.71 5, ¹²¹ In: 6.22 12).

[†] For absolute intensity per 100 decays, multiply by 0.956.

$\gamma(^{119}\text{Sn})$

I γ normalization: From Σ I β (to g.s.+24-keV level)+Ti(311, with IT decay) + Σ I γ (to g.s.+24-keV level, except I γ (24))=100 %. Using Σ I β (to g.s.+24-keV level)=95% (syst).

E_{γ}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
23.867 10		23.868	3/2+	0	1/2+	M1+E2	<0.003	5.07 8	α (L)=4.09 6; α (M)=0.803 12; α (N+)=0.1636 23 α (N)=0.1506 22; α (O)=0.01291 19 I _{γ} : no intensity was reported.
896.6 [#] 2	4.2 25	920.49	3/2+	23.868	3/2+	[M1+E2]		0.00182 18	α =0.00182 18; α (K)=0.00158 16; α (L)=0.000193 16; α (M)=3.8×10 ⁻⁵ 3; α (N+)=7.7×10 ⁻⁶ 7 α (N)=7.1×10 ⁻⁶ 6; α (O)=6.1×10 ⁻⁷ 7 I _Y : 14 3 for complex γ of 897.33 20 (1973Ra17).
897.5 [#] 2	10 3	921.39	5/2+	23.868	3/2+	E2(+M1)		0.00182 18	$\alpha = 0.00182 \ 18; \ \alpha(K) = 0.00158 \ 16; \ \alpha(L) = 0.000192 \ 16; \alpha(M) = 3.8 \times 10^{-5} \ 3; \ \alpha(N+) = 7.7 \times 10^{-6} \ 7 \alpha(N) = 7.1 \times 10^{-6} \ 6; \ \alpha(O) = 6.1 \times 10^{-7} \ 7$
920.5 [#] 2	11 4	920.49	3/2+	0	1/2+	E2+M1	-10 +2-5	0.001554 22	α =0.001554 22; α (K)=0.001347 <i>19</i> ; α (L)=0.0001668 24; α (M)=3.26×10 ⁻⁵ 5; α (N+)=6.63×10 ⁻⁶ α (N)=6.12×10 ⁻⁶ 9; α (O)=5.18×10 ⁻⁷ 8 I _{γ} : 14 3 for complex γ of 920.65 <i>15</i> (1973Ra17).
921.4 [#] 2	3.4 13	921.39	5/2+	0	1/2+	E2		0.001547 22	α =0.001547 22; α (K)=0.001342 <i>19</i> ; α (L)=0.0001661 24; α (M)=3.25×10 ⁻⁵ 5; α (N+)=6.61×10 ⁻⁶ α (N)=6.09×10 ⁻⁶ 9; α (O)=5.16×10 ⁻⁷ 8 E _y : 915.4 3 (19768c30).
1065.55 6	100	1089.44	5/2+	23.868	3/2+	M1+E2	+0.26 3	0.001340 19	$\alpha = 0.001340 \ 19; \ \alpha(\mathbf{K}) = 0.001168 \ 17; \ \alpha(\mathbf{L}) = 0.0001393 \ 20; \\ \alpha(\mathbf{M}) = 2.72 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 5.57 \times 10^{-6} \\ \alpha(\mathbf{N}) = 5.12 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 4.52 \times 10^{-7} \ 7$
1089.9 <i>3</i>	20 5	1089.44	5/2+	0	1/2+	[E2]		0.001066 15	$\alpha = 0.001066 \ 15; \ \alpha(K) = 0.000926 \ 13; \ \alpha(L) = 0.0001129 \ 16; \\ \alpha(M) = 2.20 \times 10^{-5} \ 3; \ \alpha(N+) = 4.50 \times 10^{-6} \\ \alpha(N) = 4 \ 14 \times 10^{-6} \ 6; \ \alpha(O) = 3 \ 55 \times 10^{-7} \ 5 \ 10^{-7} \ 10^{-7} \ 5 \ 10^{-7} \ 10^$
1163.85 6	42 5	1187.73	3/2+,5/2+	23.868	3/2+	M1		0.001117 16	$\alpha(N) = 1.11 \times 10^{-5} \text{ or } \alpha(C) = 3.55 \times 10^{-5} \text{ J} \text{ (a)} = 0.0001117 \text{ I6}; \ \alpha(K) = 0.000972 \text{ I4}; \ \alpha(L) = 0.0001155 \text{ I7}; \ \alpha(M) = 2.25 \times 10^{-5} \text{ 4}; \ \alpha(N+) = 7.46 \times 10^{-6} \text{ (a)} = 3.75 \times 10^{-7} \text{ 6}; \ \alpha(IPF) = 2.84 \times 10^{-6} \text{ J} \text{ (b)} = 4.25 \times 10^{-6} \text{ 6}; \ \alpha(O) = 3.75 \times 10^{-7} \text{ 6}; \ \alpha(IPF) = 2.84 \times 10^{-6} \text{ J} $
1187.79 20	8 <i>3</i>	1187.73	3/2+,5/2+	0	1/2+	[M1+E2]		0.00098 9	α =0.00098 9; α (K)=0.00085 8; α (L)=0.000102 9; α (M)=1.99×10 ⁻⁵ 17; α (N+)=9.23×10 ⁻⁶ 13 α (N)=3.7×10 ⁻⁶ 4; α (O)=3.3×10 ⁻⁷ 4; α (IPF)=5.2×10 ⁻⁶ 4
1225.7 3	16 4	1249.71	1/2+	23.868	3/2+	[M1+E2]		0.00092 9	$\alpha = 0.00092 \ 9; \ \alpha(\text{K}) = 0.00080 \ 8; \ \alpha(\text{L}) = 9.5 \times 10^{-5} \ 8; \alpha(\text{M}) = 1.86 \times 10^{-5} \ 16; \ \alpha(\text{N}+) = 1.36 \times 10^{-5} \ 4 \alpha(\text{N}) = 3.5 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 3.1 \times 10^{-7} \ 3; \ \alpha(\text{IPF}) = 9.8 \times 10^{-6} \ 7 I_{\gamma}: \ 60 \ 20 \ (1972 \text{Ja31}).$
1249.71 5	57 5	1249.71	$1/2^{+}$	0	$1/2^{+}$	[M1]		0.000966 14	α =0.000966 <i>14</i> ; α (K)=0.000832 <i>12</i> ; α (L)=9.87×10 ⁻⁵ <i>14</i> ;

 \mathbf{b}

From ENSDF

						¹¹⁹ In β^-	decay (18.0	min) 1973R	a17 (continued)
γ ⁽¹¹⁹ Sn) (continued)									
Eγ	Ι _γ &	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
1330 2	3 1	1354.0	5/2+	23.868	3/2+	M1+E2	-0.31 3	0.000848 <i>13</i>	$\begin{aligned} \alpha(M) &= 1.92 \times 10^{-5} \ 3; \ \alpha(N+) = 1.640 \times 10^{-5} \ 2 \\ \alpha(N) &= 3.63 \times 10^{-6} \ 5; \ \alpha(O) = 3.21 \times 10^{-7} \ 5; \ \alpha(IPF) = 1.245 \times 10^{-5} \ 18 \\ \alpha &= 0.000848 \ 13; \ \alpha(K) = 0.000717 \ 11; \ \alpha(L) = 8.50 \times 10^{-5} \ 13; \\ \alpha(M) &= 1.656 \times 10^{-5} \ 25; \ \alpha(N+) = 3.02 \times 10^{-5} \\ \alpha(N) &= 3.12 \times 10^{-6} \ 5; \ \alpha(O) = 2.76 \times 10^{-7} \ 4; \ \alpha(IPF) = 2.68 \times 10^{-5} \ 6 \end{aligned}$
1354	0.9 3	1354.0	5/2+	0	1/2+	[E2]		0.000713 10	$\begin{array}{l} \alpha = 0.000713 \ 10; \ \alpha(\mathrm{K}) = 0.000590 \ 9; \ \alpha(\mathrm{L}) = 7.08 \times 10^{-5} \ 10; \\ \alpha(\mathrm{M}) = 1.381 \times 10^{-5} \ 20; \ \alpha(\mathrm{N} +) = 3.84 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 2.60 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 2.25 \times 10^{-7} \ 4; \ \alpha(\mathrm{IPF}) = 3.55 \times 10^{-5} \ 5 \\ \mathrm{F} \ \mathrm{L} \ \mathrm{i} \ \mathrm{from} \ \mathrm{Coul} \ \mathrm{ev} \end{array}$
^x 1506.9 [@] 7	6.6 15								$L_{\gamma,1\gamma}$. Holli Coul. ex.
[†] Additiona	l informa	tion 2.							

[‡] From adopted gammas.

[#] The 897 and 920 doublets were not resolved. The E γ values are from Coul. ex., with uncertainties assigned by the evaluators. The I γ are based on $I\gamma(896.6\gamma+897.5\gamma)=14$ 3, $I\gamma(920.5\gamma+921.4\gamma)=14$ 3 from 1973Ra17, and $I(897.5\gamma)/I(921.4\gamma)=3.0$ 7, $I(896.6\gamma)/I(920.5\gamma)=0.35$ 7 from 1972St16 in Coul. ex.

^(a) From 1972Ja31. ^(b) For absolute intensity per 100 decays, multiply by ≈ 0.0022 .

 $x \gamma$ ray not placed in level scheme.

 $\boldsymbol{\omega}$

¹¹⁹In β^- decay (18.0 min) 1973Ra17

Decay Scheme

 $^{119}_{50}{
m Sn}_{69}$