¹¹⁹Te ε decay (4.70 d) 1977Ya03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. M. Symochko, E. Browne, J. K. Tuli	NDS 110,2945 (2009)	1-Dec-2008

Parent: ¹¹⁹Te: E=260.96 5; $J^{\pi}=11/2^{-}$; $T_{1/2}=4.70 \text{ d} 4$; $Q(\varepsilon)=2293.0 20$; $\%\varepsilon+\%\beta^{+}$ decay=100.0

Additional information 1. 1977Ya03: ¹¹⁸Sn(α ,3n) E(α)=44 MeV, chem; semi γ , $\gamma\gamma$, $\gamma\gamma(\theta)$; mag spect ce.

1975Du04: Sn(α ,xn) E(α)=54 MeV, mass separation; semi, scin γ , $\gamma\gamma$, γ X(t).

1967Gr14: ¹¹⁶Sn(α ,n) E<18 MeV; chem; semi, scin γ , ce, $\gamma\gamma$, $\gamma\gamma(\theta)$.

The decay scheme is that proposed by 1977Ya03, except as noted. It is similar to those proposed by 1975Du04, 1967Be04, 1967Gr14.

```
Others: γ(1977Be52,1969Ga08,1967Si14,1967Ka22,1963Ka04,1960Ko12);
         ce (1969Ga08,1967Si14,1963Sv01,1960Ko12,1982Sa22);
         \gamma\gamma(\theta) (1982Sa22, 1967Be47, 1967Be04, 1967Si14);
         \gamma\gamma (1967Gr14, 1967Ka22, 1963Ka04, 1960Ko12);
         \gamma\beta+ (1963Ka04);
         γce (1963Sv01);
         \beta^+ (1960Ko12)
```

¹¹⁹Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0	5/2+	38.19 h 22	
270.54 4	7/2+	35 ps 10	$T_{1/2}$: 35 ps 10 from (2089.57 γ)(270.54 γ)(t) (1975Du04).
970.90 5	9/2+		
1048.42 5	7/2+		
1212.75 4	9/2+	5.2 ps 48	$T_{1/2}$: <10 ps from (1212.7 γ)(153.5 γ)(t) and (x)(1212.7 γ)(t) (1975Du04).
1249.74 5	9/2+		
1366.34 4	$11/2^{-}$	112 ps 15	$T_{1/2}$: 112 ps 15 from (153.59 γ)(x)(t) and (1212.73 γ)(x)(t) (1975Du04).
1407.33 7	$11/2^{+}$		
2129.82 11	9/2-		
2226.06 6	$11/2^{-}$		
2278.92 6	$13/2^{-}$		
2283.8 4	9/2-		
2360.22 9	9/2-		
2379.55 9	(9/2,13/2)		

[†] Deduced by evaluators from a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

```
\varepsilon, \beta^+ radiations
```

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(174.4 20)	2379.55		1.0 6	6.4 3	1.0 6	εK=0.8154; εL=0.1452 5; εM+=0.03935 16
(193.7 20)	2360.22		4.9 1	5.857 15	4.9 1	εK=0.8210; εL=0.1410 4; εM+=0.03804 13
(270.2 21)	2283.8		0.32 2	7.37 3	0.32 2	εK=0.8340; εL=0.13103 19; εM+=0.03496 6
(275.0 20)	2278.92		6.6 1	6.072 11	6.6 1	εK=0.8346; εL=0.13061 17; εM+=0.03483 6
(327.9 20)	2226.06		4.7 4	6.39 4	4.7 4	εK=0.8394; εL=0.1269; εM+=0.03370 4
(424.1 20)	2129.82		1.8 <i>1</i>	7.044 25	1.8 <i>1</i>	εK=0.8447; εL=0.1228; εM+=0.03243
(1146.6 20)	1407.33		7.0 1	7.354 8	7.0 1	ε K=0.8554; ε L=0.1147; ε M+=0.02994
(1187.6 20)	1366.34	0.0062 5	67 3	6.404 20	67 <i>3</i>	av Eβ=82.9 10; εK=0.8555; εL=0.1145; εM+=0.02989
(1583.1 20)	970.90	0.0043 11	0.28 7	9.04 11	0.28 7	av E β =256.8 9; ε K=0.8440; ε L=0.1117; ε M+=0.02911
(2283.4 20)	270.54	0.36 <i>3</i>	5.0 5	9.40 ¹ <i>u</i> 4	5.4 5	av Eβ=585.9 9; εK=0.7977; εL=0.1072; εM+=0.02801

[†] Absolute intensity per 100 decays.

I γ normalization: from Σ Ti(to g.s.)=100.

 \mathbf{b}

${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. ^b	δ	α^{\dagger}	Comments
116.62 6	0.68 4	1366.34	11/2-	1249.74 9/2+	E1		0.1223	$\begin{array}{l} \alpha(\text{K}) \text{exp} = 0.092 + 27 - 22 \\ \alpha(\text{K}) = 0.1057 \ 15; \ \alpha(\text{L}) = 0.01341 \ 19; \ \alpha(\text{M}) = 0.00263 \ 4; \\ \alpha(\text{N}+) = 0.000547 \ 8 \end{array}$
153.59 <i>3</i>	100 4	1366.34	11/2-	1212.75 9/2+	E1		0.0563	$\alpha(N)=0.000500 7; \alpha(O)=4.68 \times 10^{-5} 7$ $\alpha(K)\exp=0.052 + 5 - 4$ $\alpha(K)=0.0487 7; \alpha(L)=0.00610 9; \alpha(M)=0.001197 17;$ $\alpha(N+)=0.000250 4$ $\alpha(N)=0.000250 4$
						_		$\alpha(N) = 0.000228 4; \alpha(O) = 2.16 \times 10^{-5} 3$ K:L1:L2:L3:M+=100 4:10.6 4:0.88 14:1.23 16:3.09 19.
164.34 5	1.96 8	1212.75	9/2+	1048.42 7/2+	M1+E2	+1.0 ^{&} +11-7	0.22 6	$\begin{array}{l} \alpha(\text{K}) \exp = 0.144 + 20 - 18 \\ \alpha(\text{K}) = 0.18 \ 4; \ \alpha(\text{L}) = 0.032 \ 13; \ \alpha(\text{M}) = 0.007 \ 3; \\ \alpha(\text{N}+) = 0.0013 \ 6 \\ \alpha(\text{N}) = 0.0012 \ 5; \ \alpha(\text{O}) = 0.00011 \ 4 \\ \text{K:L:M} = 100 \ 8:13 \ 3:2.3 \ 4. \end{array}$
^x 184.11 [#] 20	0.04 2							
^x 190.54 [#] 20	0.05 2							
^x 201.17 [#] 20	0.02 1							
241.78 8	0.09 2	1212.75	9/2+	970.90 9/2+	M1(+E2)		0.065 11	$\begin{aligned} &\alpha(\text{K})\exp=0.030 + 19 - 12 \\ &\alpha(\text{K})=0.055 \ 8; \ \alpha(\text{L})=0.0083 \ 24; \ \alpha(\text{M})=0.0017 \ 5; \\ &\alpha(\text{N}+)=0.00034 \ 10 \\ &\alpha(\text{N})=0.00032 \ 9; \ \alpha(\text{O})=2.9\times10^{-5} \ 7 \end{aligned}$
270.53 4	42.3 6	270.54	7/2+	0 5/2+	M1+E2	-0.118 ^{&} 16	0.0410	$\alpha(K)=0.0355 5; \alpha(L)=0.00447 7; \alpha(M)=0.000885 13; \alpha(N+)=0.000188 3 \alpha(N)=0.0001707 25; \alpha(O)=1.687\times10^{-5} 24 K:L1:L2:L3:M+=100.0 17:11.3 3:0.61 10:0.19 3:2.97 15 (1977Ya03): K/L1=8.9 +8-7 L1/L2=12 +5-3 (1982Sa22)$
^x 369.7 [#] 3	0.05 2							
395.42 6	0.50 4	1366.34	11/2-	970.90 9/2+	E1		0.00444 7	$\alpha(K)\exp=0.0037 + 7-6$ $\alpha=0.00444 7; \ \alpha(K)=0.00386 6; \ \alpha(L)=0.000469 7;$ $\alpha(M)=9.21\times10^{-5} 13; \ \alpha(N+)=1.94\times10^{-5} 3$ $\alpha(L)=0.00469 7;$ $\alpha(M)=0.21\times10^{-5} 13; \ \alpha(N+)=1.94\times10^{-5} 3$
700.33 8	0.70 8	970.90	9/2+	270.54 7/2+	M1+E2		0.0035 4	$\begin{aligned} \alpha(\mathbf{X}) &= 1.776 \times 10^{-2} 23; \ \alpha(\mathbf{O}) &= 1.729 \times 10^{-2} 23 \\ \alpha(\mathbf{K}) &= 0.0029 + 9 - 7 \\ \alpha &= 0.0035 \ 4; \ \alpha(\mathbf{K}) &= 0.0030 \ 4; \ \alpha(\mathbf{L}) &= 0.00038 \ 3; \\ \alpha(\mathbf{M}) &= 7.5 \times 10^{-5} \ 6; \ \alpha(\mathbf{N} +) &= 1.58 \times 10^{-5} \ 12 \\ \alpha(\mathbf{N}) &= 1.44 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) &= 1.42 \times 10^{-6} \ 13 \end{aligned}$
^x 760.3 [#] 5	0.07 3	1049 42	7/0+	270 54 7/2+				(W) 0.0014 + 28 7
///.91 19	0.10.6	1048.42	1/2'	270.54 7/21				$\alpha(\mathbf{K})\exp=0.0014 + 28 - 7$

 ${}^{119}_{51}{
m Sb}_{68}{
m -}2$

¹¹⁹ Te ε decay (4.70 d) 1977Ya03 (continued)											
γ ⁽¹¹⁹ Sb) (continued)											
${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	δ	α^{\dagger}	Comments			
818.80 <i>17</i> 859.68 <i>9</i>	0.16 <i>4</i> 0.24 <i>3</i>	2226.06 2226.06	11/2 ⁻ 11/2 ⁻	1407.33 11/2 1366.34 11/2	+ - M1(+E2)	≤0.89	0.00228 11	$\begin{aligned} &\alpha(K)\exp=0.0012 + 9 - 5 \\ &\alpha(K)\exp=0.0024 + 6 - 5 \\ &\alpha=0.00228 \ 11; \ \alpha(K)=0.00198 \ 10; \ \alpha(L)=0.000242 \\ &10; \ \alpha(M)=4.76 \times 10^{-5} \ 19; \ \alpha(N+)=1.01 \times 10^{-5} \ 5 \\ &\alpha(N)=9.2 \times 10^{-6} \ 4; \ \alpha(O)=9.1 \times 10^{-7} \ 5 \end{aligned}$			
871.46 <i>13</i>	0.58 5	2278.92	13/2-	1407.33 11/2	+ E1		0.000756 11	δ: 0.89≤from α(K)exp (1977Ya03). α(K)exp=0.00049 +15-13 α=0.000756 11; α(K)=0.000659 10; α(L)=7.82×10-5 11; α(M)=1.535×10-5 22; α(N+)=3.26×10-6 α(N)=2.06×10-6 5, α(O)=2.04×10-7 5			
912.60 5	9.44 12	2278.92	13/2-	1366.34 11/2	- M1+E2	-0.41 ^{&} +6-5	0.00202 4	$\begin{aligned} \alpha(N) &= 2.90 \times 10^{-6} \ 5; \ \alpha(O) &= 2.94 \times 10^{-6} \ 5 \\ \alpha(K) &= 0.00181 \ + 14 - 13 \\ \alpha &= 0.00202 \ 4; \ \alpha(K) &= 0.00176 \ 3; \ \alpha(L) &= 0.000213 \ 4; \\ \alpha(M) &= 4.20 \times 10^{-5} \ 7; \ \alpha(N+) &= 8.92 \times 10^{-6} \ 14 \\ \alpha(N) &= 8.11 \times 10^{-6} \ 13; \ \alpha(O) &= 8.08 \times 10^{-7} \ 13 \\ K = 7.5 \ + 11 \ 8 \end{aligned}$			
917.6 <i>3</i>	0.13 6	2129.82	9/2-	1212.75 9/2+		0		$\alpha(K) \exp[= 0.0006 + 9 - 3]$			
942.21 6	7.69 9	1212.75	9/2+	270.54 7/2+	M1+E2	-0.72 ^{&} +14-10	0.00181 5	$\alpha(K)\exp=0.00157 + 12 - 11$ $\alpha=0.00181 5; \ \alpha(K)=0.00157 4; \ \alpha(L)=0.000191 4;$ $\alpha(M)=3.77\times10^{-5} 8; \ \alpha(N+)=8.00\times10^{-6} 18$ $\alpha(N)=7.27\times10^{-6} 16; \ \alpha(O)=7.22\times10^{-7} 17$ K-L: M=100 2:10 1 14:2 4 4			
952.82 <i>15</i> 970.91 <i>15</i>	0.13 <i>6</i> 0.35 <i>5</i>	2360.22 970.90	9/2 ⁻ 9/2 ⁺	1407.33 11/2 0 5/2 ⁺	+ E2		0.001457 21	$\begin{aligned} \alpha(\text{K}) &= 100\ 5.10.1\ 14.3.4\ 4. \\ \alpha(\text{K}) &= 20.0007\ + 8 - 4 \\ \alpha(\text{K}) &= 20.0011\ + 4 - 3 \\ \alpha &= 0.001457\ 21;\ \alpha(\text{K}) &= 0.001263\ 18; \\ \alpha(\text{L}) &= 0.0001572\ 22;\ \alpha(\text{M}) &= 3.10 \times 10^{-5}\ 5; \\ \alpha(\text{N}+) &= 6.55 \times 10^{-6} \\ \alpha(\text{N}) &= 5.97 \times 10^{-6}\ 0;\ \alpha(\text{M}) &= 5.85 \times 10^{-7}\ 0; \end{aligned}$			
972.8 976.37 7	0.15 <i>10</i> 4.10 <i>10</i>	2379.55 2226.06	(9/2,13/2) 11/2 ⁻	1407.33 11/2 1249.74 9/2 ⁺	+ E1		0.000606 9	$\begin{aligned} \alpha(\mathbf{K}) &= 5.97 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) &= 5.85 \times 10^{-7} \ 9 \end{aligned}$ $\begin{aligned} \alpha(\mathbf{K}) &= 0.000509 + 7 - 6 \\ \alpha &= 0.000606 \ 9; \ \alpha(\mathbf{K}) &= 0.000529 \ 8; \ \alpha(\mathbf{L}) &= 6.25 \times 10^{-5} \\ 9; \ \alpha(\mathbf{M}) &= 1.227 \times 10^{-5} \ 18; \ \alpha(\mathbf{N}+) &= 2.60 \times 10^{-6} \ 4 \\ \alpha(\mathbf{N}) &= 2.37 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) &= 2.35 \times 10^{-7} \ 4 \\ \mathbf{K}/\mathbf{L} &= 9.5 + 89 - 33. \end{aligned}$			
979.29 7	4.55 11	1249.74	9/2+	270.54 7/2+	M1+E2	-0.38 ^{&} +11-8	0.00173 4	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00164 + 14 - 13 \\ &\alpha = 0.00173 \ 4; \ \alpha(\text{K}) = 0.00150 \ 3; \ \alpha(\text{L}) = 0.000182 \ 4; \\ &\alpha(\text{M}) = 3.58 \times 10^{-5} \ 7; \ \alpha(\text{N}+) = 7.61 \times 10^{-6} \ 14 \\ &\alpha(\text{N}) = 6.92 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 6.90 \times 10^{-7} \ 13 \\ &\text{K:L:M} = 100 \ 3:13.5 \ 18:3.5 \ 13. \end{aligned}$			
1013.20 ^d 8	2.5 ^d 5	2226.06	11/2-	1212.75 9/2+				α (K)exp=0.00076 7 K/L=17 +9-5.			

ω

 ${}^{119}_{51}{
m Sb}_{68}$ -3

					¹¹⁹ Τe ε ά	lecay (4.70 d	l) 1977Y	a03 (continued)	
E_{γ}^{\ddagger}	I_{γ}^{ac}	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ	α^{\dagger}	Comments
					<u>'</u>				E_{γ} : doublet. The possibility of a single transition with mult=E1+M2 is excluded from inconsistency between the <i>α</i> (K)exp and <i>γγ</i> (<i>θ</i>) results. I _γ : divided from Iγ=3.78 8 based on the <i>α</i> (K)exp and the assumed mult of E1.
1013.20 ^d 8	1.3 ^d 9	2379.55	(9/2,13/2)	1366.34	$11/2^{-}$				I_{γ} : divided from I_{γ} =3.78 8 based on the $\alpha(K)$ exp and the assumed mult of M1+E2
1048.44 6	4.82 7	1048.42	7/2+	0	5/2+	M1(+E2)	≤0.97	0.00145 8	
x1066.3 [@] 3 1081.35 10	0.15 5 2.41 5	2129.82	9/2-	1048.42	7/2+	E1		0.000500 7	α (K)exp=0.00046 +6-5 α =0.000500 7; α (K)=0.000436 7; α (L)=5.14×10 ⁻⁵ 8; α (M)=1.009×10 ⁻⁵ 15; α (N+)=2.14×10 ⁻⁶ 3 α (N)=1.95×10 ⁻⁶ 3; α (O)=1.94×10 ⁻⁷ 3 K/I =33 +28-10
1095.75 10	3.38 4	1366.34	11/2-	270.54	7/2+	M2(+E3)	+0.12 8	0.00326 6	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00296 + 20 - 19 \\ &\alpha(\text{K}) \exp = 0.00296 + 20 - 19 \\ &\alpha=0.00326 \ 6; \ \alpha(\text{K}) = 0.00282 \ 5; \ \alpha(\text{L}) = 0.000353 \ 6; \\ &\alpha(\text{M}) = 6.98 \times 10^{-5} \ 11; \ \alpha(\text{N}+) = 1.483 \times 10^{-5} \ 23 \\ &\alpha(\text{N}) = 1.349 \times 10^{-5} \ 21; \ \alpha(\text{O}) = 1.342 \times 10^{-6} \ 21 \\ &\text{K:L:M} = 100 \ 2:14.6 \ 9:3.0 \ 6. \\ &\delta: \ +0.12 \ 8 \ \text{from weighted av of } 0.13 \ 11 \ \text{from } \gamma\gamma(\theta) \\ &\text{and } 0.10 \ +11 - 10 \ \text{from } \alpha(\text{K}) \exp(1977\text{Ya}03). \end{aligned}$
1111.2 8 1136.75 7	0.017 <i>14</i> 11.57 <i>10</i>	2360.22 1407.33	9/2 11/2+	1249.74 270.54	9/2† 7/2+	E2		0.001036 <i>15</i>	$\alpha(K)\exp=0.0005 + 24 - 8$ $\alpha(K)\exp=0.00092 \ 6$ $\alpha=0.001036 \ 15; \ \alpha(K)=0.000898 \ 13; \ \alpha(L)=0.0001101$ $16; \ \alpha(M)=2.17\times10^{-5} \ 3; \ \alpha(N+)=6.15\times10^{-6}$ $\alpha(N)=4.18\times10^{-6} \ 6; \ \alpha(O)=4.12\times10^{-7} \ 6; $ $\alpha(IPF)=1.553\times10^{-6} \ 22$ K:1.:M=100 3:11 0 15:24 6.
1212.73 7	100	1212.75	9/2+	0	5/2+	E2		0.000911 <i>13</i>	$\begin{aligned} \alpha(\text{K}) \exp &= 0.00082 \ 4 \\ \alpha &= 0.000911 \ 13; \ \alpha(\text{K}) &= 0.000784 \ 11; \ \alpha(\text{L}) &= 9.57 \times 10^{-5} \\ 14; \ \alpha(\text{M}) &= 1.88 \times 10^{-5} \ 3; \ \alpha(\text{N}+) &= 1.244 \times 10^{-5} \ 1 \\ \alpha(\text{N}) &= 3.63 \times 10^{-6} \ 5; \ \alpha(\text{O}) &= 3.59 \times 10^{-7} \ 5; \\ \alpha(\text{IPF}) &= 8.44 \times 10^{-6} \ 12 \\ \text{K:L:M} &= 100.0 \ 17; 12.3 \ 5; 2.93 \ 11. \end{aligned}$
1249.65 17	0.262 19	1249.74	9/2+	0	5/2+	(E2)		0.00095 9	$\alpha(K)\exp=0.00089 + 18 - 15$ $\alpha=0.00095 \ 9; \ \alpha(K)=0.00082 \ 8; \ \alpha(L)=9.9 \times 10^{-5} \ 9;$ $\alpha(M)=1.94 \times 10^{-5} \ 18; \ \alpha(N+)=1.73 \times 10^{-5} \ 5$

4

 ${}^{119}_{51}{
m Sb}_{68}{
m -4}$

					¹¹⁹ T	e ε decay (4.	70 d) 1 9	77Ya03 (contin	ued)	
$\gamma(^{119}\text{Sb})$ (continued)										
${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ	$lpha^{\dagger}$	Comments	
1255.64 <i>24</i> 1312.01 <i>17</i>	0.023 <i>12</i> 0.185 <i>21</i>	2226.06 2360.22	11/2 ⁻ 9/2 ⁻	970.90 1048.42	9/2 ⁺ 7/2 ⁺	E1		0.000447 7	$\begin{aligned} \alpha(\text{N}) &= 3.7 \times 10^{-6} \ 4; \ \alpha(\text{O}) &= 3.7 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) &= 1.32 \times 10^{-5} \ 8 \\ \alpha(\text{K}) &= 0.0006 \ + 13 - 3 \\ \alpha(\text{K}) &= 0.00021 \ + 11 - 9 \\ \alpha &= 0.000447 \ 7; \ \alpha(\text{K}) &= 0.000308 \ 5; \ \alpha(\text{L}) &= 3.62 \times 10^{-5} \ 5; \\ \alpha(\text{M}) &= 7.09 \times 10^{-6} \ 10; \ \alpha(\text{N} +) &= 9.59 \times 10^{-5} \ 14 \\ \alpha(\text{N}) &= 1.370 \times 10^{-6} \ 20; \ \alpha(\text{O}) &= 1.365 \times 10^{-7} \ 20; \end{aligned}$	
1366.39 <i>14</i>	1.61 <i>3</i>	1366.34	11/2-	0	5/2+	E3		0.001360 <i>19</i>	$\alpha(\text{IPF})=9.44\times10^{-5} \ 14$ $\alpha(\text{K})\exp=0.00111 \ 9$ $\alpha=0.001360 \ 19; \ \alpha(\text{K})=0.001163 \ 17; \ \alpha(\text{L})=0.0001484 \ 21; \ \alpha(\text{M})=2.94\times10^{-5} \ 5; \ \alpha(\text{N}+)=1.92\times10^{-5}$ $\alpha(\text{N})=5.65\times10^{-6} \ 8; \ \alpha(\text{O})=5.53\times10^{-7} \ 8; \ \alpha(\text{IPF})=1.296\times10^{-5} \ 19$	
^x 1391.9	0.05 1								K/L = 7.2 + 33 - 18.	
$x_{1407.43}^{a}$ 15	0.20 10									
1859.0 5	0.03 T 0.21 6	2129.82	9/2-	270.54	$7/2^{+}$				$\alpha(K) \exp = 0.00026 + 23 - 13$	
1955.45 [#] 20	< 0.04	2226.06	11/2-	270.54	7/2+					
2013.2 4	0.48 3	2283.8	9/2-	270.54	1/2+	EI		0.000786 11	$\alpha(K) \exp=0.00014 \ 3$ $\alpha=0.000786 \ 11; \ \alpha(K)=0.0001524 \ 22; \ \alpha(L)=1.773\times10^{-5} \ 25;$ $\alpha(M)=3.47\times10^{-6} \ 5; \ \alpha(N+)=0.000612$ $\alpha(N)=6.71\times10^{-7} \ 10; \ \alpha(O)=6.71\times10^{-8} \ 10; \ \alpha(IPF)=0.000612$ 9	
2089.57 12	7.08 8	2360.22	9/2-	270.54	7/2+	E1(+M2)	+0.01 6	0.000830 12	$\alpha(K) \exp = 0.000139 + 16 - 15$ $\alpha = 0.000830 \ 12; \ \alpha(K) = 0.000144 \ 3; \ \alpha(L) = 1.67 \times 10^{-5} \ 4;$ $\alpha(M) = 3.28 \times 10^{-6} \ 7; \ \alpha(N+) = 0.000666 \ 10$ $\alpha(N) = 6.34 \times 10^{-7} \ 14; \ \alpha(O) = 6.34 \times 10^{-8} \ 14; \ \alpha(IPF) = 0.000665 \ 10$ K/L = 6.7 + 16 - 8. $\delta: \ \pm 0.01 \ 6 \ \text{from } \gamma\gamma(\theta) \ (1977Ya02)$	
^x 2126.3 [@] 4	0.04 2								0. 10.010 Hom (7(0) (1)77 Ho2).	
$x^{2225.6}$ 4	< 0.04									
^x 2360.4 [@] 2	<0.1 <i>I</i>								E_{γ} : assigned as 2089γ-270γ sum peak by 1977Ya03. However, no 2013γ-270γ sum peak is visible in the spectrum of 1977Ya03 which may indicate that part of the 2360 peak is due to a 2360γ.	
[†] Additional	[†] Additional information 2.									

S

 ${}^{119}_{51}{
m Sb}_{68}{
m -5}$

 $\gamma(^{119}\text{Sb})$ (continued)

[‡] From ce data of 1977Ya03, except as noted.

- # From 1975Du04.
 @ From 1975Du04. Assigned as double-escape or sum peak in 1977Ya03.
- [&] Value recommended in 1980Kr22. ^{*a*} Relative to I(153.59 γ)=100.

^b From $\alpha(K)$ exp and ce ratios. The $\alpha(K)$ exp are based on relative Iy and Ice(K) intensities normalized to $\alpha(K)(270.53\gamma)=0.0358$, which is the theoretical value based on the multipolarity from the experimental L-subshell ratio.

^c For absolute intensity per 100 decays, multiply by 0.661 3.

^d Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

 ${}^{119}_{51}\text{Sb}_{68}\text{-}7$

¹¹⁹Te ε decay (4.70 d) 1977Ya03

