### <sup>119</sup>Te ε decay (16.05 h) 1975Du04

|                 | History                               |                     |                        |  |
|-----------------|---------------------------------------|---------------------|------------------------|--|
| Туре            | Author                                | Citation            | Literature Cutoff Date |  |
| Full Evaluation | D. M. Symochko, E. Browne, J. K. Tuli | NDS 110,2945 (2009) | 1-Dec-2008             |  |

Parent: <sup>119</sup>Te: E=0.0;  $J^{\pi}=1/2^+$ ;  $T_{1/2}=16.05$  h 5;  $Q(\varepsilon)=2293.0\ 20$ ;  $\%\varepsilon+\%\beta^+$  decay=100.0

Additional information 1. 1975Du04: Sn( $\alpha$ ,xn) E=54 MeV; mass separation; semi, scin  $\gamma$ ,  $\gamma\gamma$ ,  $X\gamma$ (t). 1975Me23: <sup>120</sup>Te( $\gamma$ ,n); semi  $\gamma$ ,  $\gamma\gamma$ . 1967Gr14: <sup>116</sup>Sn( $\alpha$ ,n) E<18 MeV; chem; semi, scin  $\gamma$ , ce,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ .

Others: 1967Be04, 1960Ko12.

The decay scheme is that proposed by 1975Du04.

<sup>119</sup>Sb Levels

| E(level) <sup>†</sup> | $\mathbf{J}^{\pi}$ | $T_{1/2}$ ‡ | Comments                                                  |
|-----------------------|--------------------|-------------|-----------------------------------------------------------|
| 0.0                   | 5/2+               | 38.19 h 22  |                                                           |
| 270.44 4              | 7/2+               |             |                                                           |
| 644.03 <i>4</i>       | $1/2^{+}$          | 5.2 ps 48   | $T_{1/2}$ : <10 ps from (644 $\gamma$ )(x)(t) (1975Du04). |
| 699.87 <i>5</i>       | $3/2^+, 5/2^+$     |             |                                                           |
| 1327.25 11            | $(1/2^{-})$        |             |                                                           |
| 1338.69 10            | $3/2^{+}$          |             |                                                           |
| 1413.21 7             | 3/2-               |             |                                                           |
| 1487.61 7             | $(3/2^+)$          |             |                                                           |
| 1749.64 6             | $3/2^{+}$          |             |                                                           |
| 1821.13 8             | $1/2^{+}$          |             |                                                           |
| 1875.32 20            | $(1/2^+, 3/2)$     |             |                                                           |

 $^{\dagger}$  E(levels) are based on a least-squares fit by the evaluators to the E( $\gamma's).$ 

<sup>‡</sup> From Adopted Levels.

 $\varepsilon, \beta^+$  radiations

| E(decay)    | E(level) | $I\beta^+$ <sup>†</sup> | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft        | $\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                                        |
|-------------|----------|-------------------------|-----------------------------------|---------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|
| (417.7 20)  | 1875.32  |                         | 0.042 17                          | 7.82 18       | 0.042 17                                      | εK=0.8445; εL=0.1230; εM+=0.03250                                                               |
| (471.9 20)  | 1821.13  |                         | 0.95 10                           | 6.57 5        | 0.95 10                                       | εK=0.8465; εL=0.1214; εM+=0.03201                                                               |
| (543.4 20)  | 1749.64  |                         | 4.5 3                             | 6.03 <i>3</i> | 4.5 3                                         | εK=0.8486; εL=0.1199; εM+=0.03153                                                               |
| (805.4 20)  | 1487.61  |                         | 0.60 6                            | 7.26 5        | 0.60 6                                        | εK=0.8529; εL=0.1166; εM+=0.03053                                                               |
| (879.8 20)  | 1413.21  |                         | 1.26 9                            | 7.02 4        | 1.26 9                                        | εK=0.8536; εL=0.1160; εM+=0.03036                                                               |
| (954.3 20)  | 1338.69  |                         | 0.28 6                            | 7.74 10       | 0.28 6                                        | εK=0.8542; εL=0.1156; εM+=0.03022                                                               |
| (965.8 20)  | 1327.25  |                         | 0.13 3                            | 8.09 10       | 0.13 3                                        | εK=0.8543; εL=0.1155; εM+=0.03020                                                               |
| (1593.1 20) | 699.87   | 0.16 1                  | 9.5 6                             | 6.66 3        | 9.7 6                                         | av E $\beta$ =261.2 9; $\varepsilon$ K=0.8431; $\varepsilon$ L=0.1116; $\varepsilon$ M+=0.02908 |
| (1649.0 20) | 644.03   | 1.89 <i>3</i>           | 80.7 5                            | 5.767 4       | 82.6 5                                        | av E $\beta$ =285.4 9; $\varepsilon$ K=0.8376; $\varepsilon$ L=0.1107; $\varepsilon$ M+=0.02885 |

<sup>†</sup> Absolute intensity per 100 decays.

# $\gamma(^{119}\text{Sb})$

I $\gamma$  normalization: from  $\Sigma$  Ti(to g.s. and 270-keV level)=100%, excluding the 270-keV  $\gamma$  ray.

| $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{ad}$   | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathrm{J}_f^\pi$ | Mult. <sup>b</sup> | $\delta^{c}$ | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                            |
|-------------------------|---------------------|---------------|----------------------|---------|--------------------|--------------------|--------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 149.36 <sup>#</sup>     | 0.034 <sup>#</sup>  | 1487.61       | (3/2 <sup>+</sup> )  | 1338.69 | 3/2+               | [M1,E2]            |              | 0.30 10            | $\alpha(K)=0.24\ 7;\ \alpha(L)=0.046\ 24;\ \alpha(M)=0.009\ 5;$<br>$\alpha(N+)=0.0019\ 10$<br>$\alpha(N)=0.0017\ 9;\ \alpha(Q)=0.00015\ 7$                                                                                                                                                                                          |
| 270.45 4                | 0.14 3              | 270.44        | 7/2+                 | 0.0     | 5/2+               | M1+E2              | -0.118 16    | 0.0411             | $\alpha(N)=0.00179, \alpha(D)=0.000137 \\ \alpha(K)=0.03555; \alpha(L)=0.004487; \alpha(M)=0.000885 \\ 13; \alpha(N+)=0.0001883 \\ \alpha(N)=0.000170925; \alpha(O)=1.688 \times 10^{-5}24 \\ \text{Multi-form L-related} = 100000000000000000000000000000000000$                                                                   |
| 429.50 10               | 0.10 3              | 699.87        | 3/2+,5/2+            | 270.44  | 7/2+               | [E2]               |              | 0.01207            | Mult.: from L-subsetin ratio in 4.7-d <sup>400</sup> fe $\varepsilon$ decay.<br>$\alpha(K)=0.01026\ 15;\ \alpha(L)=0.001460\ 21;$<br>$\alpha(M)=0.000291\ 4;\ \alpha(N+)=6.04\times10^{-5}\ 9$<br>$\alpha(N)=5.53\times10^{-5}\ 8;\ \alpha(O)=5.13\times10^{-6}\ 8$                                                                 |
| 627.72 <sup>#</sup>     | 0.017 <sup>#</sup>  | 1327.25       | (1/2 <sup>-</sup> )  | 699.87  | 3/2+,5/2+          | [E1]               |              | 0.001501 21        | $ \begin{array}{l} \alpha = 0.001501 \ 21; \ \alpha(\mathrm{K}) = 0.001307 \ 19; \ \alpha(\mathrm{L}) = 0.0001566 \\ 22; \ \alpha(\mathrm{M}) = 3.08 \times 10^{-5} \ 5; \ \alpha(\mathrm{N} +) = 6.51 \times 10^{-6} \\ \alpha(\mathrm{N}) = 5.92 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 5.84 \times 10^{-7} \ 9 \end{array} $ |
| 639 <sup>@</sup> e 1    |                     | 1338.69       | 3/2+                 | 699.87  | 3/2+,5/2+          |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 644.01 <i>4</i>         | 100                 | 644.03        | 1/2+                 | 0.0     | 5/2+               | [E2]               |              | 0.00391 6          | $\alpha$ (K)exp=0.0036 4<br>$\alpha$ =0.00391 6; $\alpha$ (K)=0.00336 5; $\alpha$ (L)=0.000442 7;<br>$\alpha$ (M)=8.75×10 <sup>-5</sup> 13; $\alpha$ (N+)=1.84×10 <sup>-5</sup> 3<br>$\alpha$ (L)=0.000442 7;                                                                                                                       |
| 683.21 <i>10</i>        | 0.13 3              | 1327.25       | (1/2 <sup>-</sup> )  | 644.03  | 1/2+               | [E1]               |              | 0.001249 18        | $\alpha(N)=1.675\times10^{-5}24; \ \alpha(O)=1.606\times10^{-5}23$<br>$\alpha=0.001249 \ 18; \ \alpha(K)=0.001088 \ 16; \ \alpha(L)=0.0001300$<br>$19; \ \alpha(M)=2.55\times10^{-5} \ 4; \ \alpha(N+)=5.41\times10^{-6}$<br>$\alpha(N)=4.92\times10^{-6} \ 7; \ \alpha(O)=4.86\times10^{-7} \ 7$                                   |
| 694.5 <i>3</i>          | 0.11 4              | 1338.69       | $3/2^{+}$            | 644.03  | $1/2^{+}$          |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 699.85 6                | 12.0 6              | 699.87        | 3/2+,5/2+            | 0.0     | 5/2+               | M1,E2              |              | 0.0035 4           | $\alpha$ (K)exp=0.0033 4<br>$\alpha$ =0.0035 4; $\alpha$ (K)=0.0030 4; $\alpha$ (L)=0.00038 3;<br>$\alpha$ (M)=7.5×10 <sup>-5</sup> 6; $\alpha$ (N+)=1.59×10 <sup>-5</sup> 12<br>$\alpha$ (N)=1.45×10 <sup>-5</sup> 11; $\alpha$ (O)=1.42×10 <sup>-6</sup> 13                                                                       |
| 713.2 2                 | 0.07 2              | 1413.21       | 3/2-                 | 699.87  | 3/2+,5/2+          |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 769.30 15               | 0.13 3              | 1413.21       | 3/2-                 | 644.03  | 1/2+               |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 787.76 10               | 0.32 5              | 1487.61       | $(3/2^{+})$          | 699.87  | 3/2+,5/2+          |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 843 57 8                | 0.072               | 1487 61       | $(3/2^+)$            | 644.03  | 1/2+               |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| $1050\frac{\&e}{1}$     | 0.55 5              | 1749.64       | $(3/2^+)$            | 699.87  | $3/2^+$ $5/2^+$    |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 1105.57 8               | 0.66 8              | 1749.64       | $3/2^+$              | 644.03  | $1/2^+$            |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 1121.30 10              | 0.24 5              | 1821.13       | $1/2^+$              | 699.87  | $3/2^+, 5/2^+$     |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 1177.04 10              | 0.85 10             | 1821.13       | $1/2^{+}$            | 644.03  | $1/2^{+}$          |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 1216.87 <sup>#</sup>    | 0.0005 <sup>#</sup> | 1487.61       | $(3/2^+)$            | 270.44  | 7/2+               |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |
| 1327.38 <sup>#</sup>    | 0.010 <sup>#</sup>  | 1327.25       | $(1/2^{-})$          | 0.0     | 5/2+               |                    |              |                    |                                                                                                                                                                                                                                                                                                                                     |

 ${}^{119}_{51}{
m Sb}_{68}{
m -}2$ 

#### <sup>119</sup>Te ε decay (16.05 h) 1975Du04 (continued)

## $\gamma(^{119}\text{Sb})$ (continued)

| ${\rm E_{\gamma}}^{\ddagger}$ | $I_{\gamma}^{ad}$  | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>b</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|--------------------|------------------------|--------------------|--------|----------------------|--------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1338.70 10                    | 0.27 5             | 1338.69                | 3/2+               | 0.0    | 5/2+                 |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1413.19 8                     | 1.30 10            | 1413.21                | 3/2-               | 0.0    | $5/2^{+}$            |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1479.5 <i>4</i>               | 0.04 2             | 1749.64                | 3/2+               | 270.44 | 7/2+                 | [E2]               | 0.000678 10        | $\alpha = 0.000678 \ l0; \ \alpha(\text{K}) = 0.000526 \ 8; \ \alpha(\text{L}) = 6.33 \times 10^{-5} \ 9; \ \alpha(\text{M}) = 1.245 \times 10^{-5} \ l8; \ \alpha(\text{N}+) = 7.62 \times 10^{-5} \ l1 \ \alpha(\text{N}) = 2.40 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 2.38 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 7.35 \times 10^{-5} \ l1 \ \alpha(\text{N}) = 2.40 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 2.38 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 7.35 \times 10^{-5} \ l1 \ \alpha(\text{N}) = 1.245 \times 10^{-5} \ \alpha(\text{N}) = 1.245 \times 10$ |
| 1487.36 <sup>#</sup>          | 0.001 <sup>#</sup> | 1487.61                | $(3/2^+)$          | 0.0    | 5/2+                 |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>x</sup> 1700.7 4         | 0.03 1             |                        |                    |        | ,                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1749.65 8                     | 4.7 3              | 1749.64                | 3/2+               | 0.0    | 5/2+                 | M1,E2              | 0.00065 3          | $\alpha$ (K)exp=0.00040 8<br>$\alpha$ =0.00065 3; $\alpha$ (K)=0.00041 3; $\alpha$ (L)=4.9×10 <sup>-5</sup> 4; $\alpha$ (M)=9.6×10 <sup>-6</sup> 7;<br>$\alpha$ (N+)=0.000180 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1821.3 <i>3</i>               | 0.04 2             | 1821.13                | 1/2+               | 0.0    | 5/2+                 | [E2]               | 0.000621 9         | $\alpha(N)=1.85\times10^{-6} \ 13; \ \alpha(O)=1.85\times10^{-7} \ 14; \ \alpha(IPF)=0.000178 \ 5$<br>$\alpha=0.000621 \ 9; \ \alpha(K)=0.000354 \ 5; \ \alpha(L)=4.21\times10^{-5} \ 6; \ \alpha(M)=8.27\times10^{-6} \ 12; \ \alpha(N+)=0.000217 \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1875.30 20                    | 0.05 2             | 1875.32                | (1/2+,3/2)         | 0.0    | 5/2+                 |                    |                    | $\alpha(N)=1.59/\times 10^{-6} 23; \ \alpha(O)=1.591\times 10^{-7} 23; \ \alpha(IPF)=0.000215 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

ω

- <sup>†</sup> Additional information 2.
  <sup>‡</sup> From 1975Du04, except as noted.
- <sup>#</sup> From 1975Me23. Intensity normalized to the strongest  $\gamma$ 's from each level.
- <sup>(a)</sup> Expected transitions which may be obscured by the intense  $644\gamma$  (1975Du04). <sup>(b)</sup> Expected transitions which may be obscured by the  $1048\gamma$  from 4.7 d <sup>119</sup>Te  $\varepsilon$  decay (1975Du04).
- <sup>*a*</sup> Relative to I(644.01 $\gamma$ )=100.

<sup>b</sup> From  $\alpha$ (K)exp by 1967Gr14, unless otherwise noted.

<sup>c</sup> From Adopted Levels.

<sup>d</sup> For absolute intensity per 100 decays, multiply by 0.841 5.

<sup>e</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.

 $^{119}_{51}$ Sb<sub>68</sub>-4

## <sup>119</sup>Te ε decay (16.05 h) 1975Du04

