¹¹⁹Ag β^- decay (2.1 s) 1975Ka09

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. M. Symochko, E. Browne, J. K. Tuli	NDS 110,2945 (2009)	1-Dec-2008

Parent: ¹¹⁹Ag: E=0.0+x; $J^{\pi} = (7/2^+)$; $T_{1/2} = 2.1$ s *1*; $Q(\beta^-) = 5.33 \times 10^3 4$; $\%\beta^-$ decay=100.0

Additional information 1. 1975Ka09: ²³⁵U(n,f) E=th, on-line mass separation; semi, scin; measured: γ , K x ray, ce; semi-semi $\gamma\gamma$; plastic-NaI $\gamma\gamma(t)$, $\gamma(K x ray)(t).$

Others: semi $\beta\gamma$, Q(β^-) (1982Al29); γ (1988RuZW).

 β -strength function: 1975All1 deduced 92% decay to levels above 250 keV.

Decay scheme is that proposed by 1975Ka09. Four possible levels 1245, 1471, 2605 and 2869 keV suggested by 1975Ka09 are also added by the evaluators.

¹¹⁹Cd Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	E(level) [‡]	J^{π}
0	$1/2^{+}$	2.69 min 2	1130.80 10	$(5/2,7/2^+)$
27.00 6	3/2+	2.3 ns 4	1245.57? 12	
146.53 11	$(11/2^{-})$	2.20 min 2	1278.80 9	$(5/2^+, 7/2^+)$
213.90 11	$(9/2^{-})$	≤1.5 ns	1401.76 7	$(5/2^+, 7/2^+)$
228.26 9	$(7/2^{-}, 9/2^{-})$	43 ns 3	1471.39? 20	
393.20 7	+		1538.82 15	$(5/2,7/2^+)$
399.13 7	$(3/2^{-}, 5/2)$		1925.51 <i>13</i>	$(5/2^+, 7/2^+)$
427.27 8	$(7/2^+)$	1.6 ns 1	2088.18 15	$(5/2^+, 7/2^+)$
525.04 9	$(3/2^{-}, 5/2, 7/2^{+})$		2424.18 20	$(5/2^+, 7/2^+, 9/2^+)$
570.88 7	(5/2,7/2)		2442.53 25	$(5/2^+, 7/2^+)$
655.49 10	(5/2,7/2)		2605.79? 23	
806.11 6	$(5/2^+, 7/2^+)$		2676.52 19	$(5/2^+, 7/2^+)$
866.48 12	(5/2,7/2,9/2)		2813.51 19	$(5/2^+, 7/2^+)$
924.24 11	$(5/2,7/2^+)$		2862.4 5	$(5/2^+, 7/2^+, 9/2^+)$
1053.65 6	$(5/2^+, 7/2^+)$		2869.6? 3	
1086.73 10	$(5/2,7/2^+)$			

[†] From Adopted Levels.

[‡] E(levels) are based on a least-squares fit to E(γ 's) by the evaluators.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(2.47 \times 10^3 4)$	2862.4	0.7 2	5.5 1	av E β =1010 19
$(2.52 \times 10^3 4)$	2813.51	3.4 4	4.8 1	av E β =1033 <i>19</i>
				E(decay): 2610 340 from $\beta\gamma$ (1982A129).
$(2.65 \times 10^3 4)$	2676.52	1.3 2	5.3 1	av E β =1097 19
$(2.89 \times 10^3 4)$	2442.53	1.4 <i>3</i>	5.4 1	av E β =1206 <i>1</i> 9
$(2.91 \times 10^3 4)$	2424.18	1.1 <i>1</i>	5.6 1	av E β =1215 19
$(3.24 \times 10^3 4)$	2088.18	7.8 8	4.9 1	av E <i>β</i> =1372 <i>19</i>
$(3.40 \times 10^3 4)$	1925.51	6.7 5	5.1 <i>1</i>	av Eβ=1449 <i>19</i>
$(3.79 \times 10^3 4)$	1538.82	1.5 2	5.9 1	av E <i>β</i> =1631 <i>19</i>
$(3.93 \times 10^3 4)$	1401.76	10.5 7	5.1 <i>1</i>	av E β =1696 19
				E(decay): 3930 150 from $\beta\gamma$ (1982A129).
$(4.05 \times 10^3 4)$	1278.80	5.4 4	5.5 1	av E β =1755 19
				E(decay): 4010 200 from $\beta\gamma$ (1982Al29).
$(4.20 \times 10^3 4)$	1130.80	1.2 2	6.2 1	av E β =1825 19
$(4.24 \times 10^3 \ 4)$	1086.73	1.8 2	6.0 1	av Eβ=1846 <i>19</i>

Continued on next page (footnotes at end of table)

¹¹⁹Ag β^- decay (2.1 s) 1975Ka09 (continued)

β^{-} radiations (continued) $I\beta^{-\dagger\ddagger}$ Log ft E(decay) E(level) Comments $(4.28 \times 10^3 4)$ 1053.65 38 2 4.7 1 av Eβ=1861 19 E(decay): 4300 50 from $\beta \gamma$ (1982Al29). $(4.41 \times 10^3 4)$ 6.2 1 924.24 $1.6\ 2$ av Eβ=1923 19 $(4.46 \times 10^3 4)$ 866.48 1.0 2 av Eβ=1950 19 6.4 1 $(4.52 \times 10^3 4)$ 806.11 7.0 7 5.6 1 av Eβ=1979 19 $(4.67 \times 10^3 \ 4)$ 655.49 3.5 6 5.9 1 av Eβ=2051 19 $(4.76 \times 10^3 4)$ 570.88 1.3 4 av E β =2091 19 $6.4\ 2$ $(4.80 \times 10^3 4)$ 525.04 0.5 4 6.84av Eβ=2113 19 $(4.90 \times 10^3 4)$ 427.27 av E β =2159 19 ≤ 2 ≥6.3 $(4.93 \times 10^3 4)$ 399.13 av Eβ=2172 19 ≤ 3 ≥ 6.1 $(5.10 \times 10^3 4)$ 228.26 ≥6.2 av Eβ=2254 19 ≤ 3 $(5.12 \times 10^3 4)$ 213.90 av Eβ=2260 19 43 $6.0 \ 4$

[†] From intensity balance of transitions. Values are tentative because unobserved γ 's from higher levels (>2.9 MeV) and unplaced γ 's could affect intensity balances, and therefore I β values.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{119}\text{Cd})$

Iγ normalization: From Σ [Ti(to gs) + Ti(to 27) + Ti(to 146)]=100%, assuming no β^- feedings to the ground state ($J^{\pi}=3/2^+$), to the 27-keV level ($J^{\pi}=3/2^+$), and 146-keV level ($J^{\pi}=11/2^-$), and excluding from the sum the total γ -ray intensity of the 27-keV transition. Other value: 0.107 22 (1975Ka09).

Eγ	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{\dagger}	$I_{(\gamma+ce)}^{@}$	Comments
14.3	<0.9	228.26	(7/2 ⁻ ,9/2 ⁻)	213.90	(9/2 ⁻)	[M1]	18.7		ce(L)/(γ +ce)=0.773 7; ce(M)/(γ +ce)=0.149 3; ce(N+)/(γ +ce)=0.0278 6 ce(N)/(γ +ce)=0.0264 5; ce(O)/(γ +ce)=0.00147 3 I _(γ+ce) : from $\gamma\gamma$ (1975Ka09). L ₂ : possible small E2 admixture (1975Ka09).
26.9 1	18.5 7	27.00	3/2+	0	1/2+	M1	21.2	410 10	$\alpha(K)$ =18.4; $\alpha(L)$ = 2.337; $\alpha(M)$ = 0.449 $\alpha(K)$ exp=19 5 $\alpha(K)$ exp: from I(K x ray)/I γ . I _($\gamma+ce$) : from intensity balance. I γ : Deduced by evaluators from γ -ray transition intensity balance at 27-keV level using Ti(26.9 γ)=410 <i>10</i> (from γ rays feeding the 27-keV level) and assuming no β^- feeding to this level. Thus I γ (26.9 γ)= (410 <i>10</i>)/1 + α = (410 <i>10</i>)/1 + (21.2 6) = 18.5 7. Other value: 21 4 (experimental, 1975Ka09). Mult.: $\alpha(K)$ exp is consistent with $\alpha(K)(M1)$ and also $\alpha(K)(E2)$. But, E2 is ruled out since $\alpha(E2)$ leads to a larger (and inconsistent) value for I($\gamma+ce$) due to the
67.4 <i>1</i>	53 9	213.90	(9/2 ⁻)	146.53	(11/2 ⁻)	M1	1.428		$\alpha(K) = 1.237 \ 19; \ \alpha(L) = 0.1560 \ 23; \ \alpha(M) = 0.0300 \ 5; \ \alpha(N+) = 0.00564 \ 9 \ \alpha(N) = 0.00534 \ 8; \ \alpha(O) = 0.000302 \ 5$
81.7 <i>1</i>	19.4 <i>21</i>	228.26	(7/2 ⁻ ,9/2 ⁻)	146.53	(11/2 ⁻)	E2	3.07		$\alpha(K) \exp = 2.20 \ 32$ $\alpha(K) = 2.17 \ 4; \ \alpha(L) = 0.730 \ 11; \ \alpha(M) = 0.1456 \ 22;$ $\alpha(N+) = 0.0244 \ 4$ $\alpha(N) = 0.0240 \ 4; \ \alpha(Q) = 0.000388 \ 6$
131 150.7 2 ^x 173 4 3	2.2 6	525.04 806.11	$(3/2^-, 5/2, 7/2^+)$ $(5/2^+, 7/2^+)$	393.20 655.49	+ (5/2,7/2)				I_{γ} : very weak.
173.4 5 177 192.0 5	0.5 3	570.88 1245.57?	(5/2,7/2)	393.20 1053.65	+ (5/2 ⁺ ,7/2 ⁺)				I_{γ} : very weak.
199.0 <i>1</i>	61 7	427.27	(7/2 ⁺)	228.26	(7/2 ⁻ ,9/2 ⁻)	E1	0.0237		α (K)exp=0.022 7 α (K)=0.0207 3; α (L)=0.00248 4; α (M)=0.000474 7; α (N+)=8.81×10 ⁻⁵ 13 α (N)=8.36×10 ⁻⁵ 12; α (O)=4.48×10 ⁻⁶ 7 I _{γ} : other: 55 9 (1988RuZW).

 $\boldsymbol{\omega}$

				1	119 Ag β^- decay (2	2.1 s) 1	975Ka09 (cor	ntinued)			
	γ ⁽¹¹⁹ Cd) (continued)										
Eγ	I_{γ} [‡] @	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult. [#]	α^{\dagger}	Comments			
213.4 1	67 7	427.27	(7/2+)	213.90	(9/2 ⁻)	E1	0.0195	$\begin{aligned} &\alpha(K) \exp[=0.012 \ 3 \\ &\alpha(K) = 0.01701 \ 24; \ \alpha(L) = 0.00204 \ 3; \ \alpha(M) = 0.000390 \ 6; \\ &\alpha(N+) = 7.25 \times 10^{-5} \ 11 \\ &\alpha(N) = 6.88 \times 10^{-5} \ 10; \ \alpha(O) = 3.71 \times 10^{-6} \ 6 \end{aligned}$			
224.8 3 235.3 2 247.6 <i>I</i> 262.7 2 271.1 2 280.6 <i>I</i> 325.0 2	$\begin{array}{c} 1.0 \ 4 \\ 2.1 \ 6 \\ 6.5 \ 10 \\ 1.0 \ 3 \\ 3.1 \ 9 \\ 4.5 \ 8 \\ 1.4 \ 3 \end{array}$	1278.80 806.11 1053.65 655.49 1401.76 1086.73 1130.80	$(5/2^+,7/2^+) (5/2^+,7/2^+) (5/2^+,7/2^+) (5/2,7/2) (5/2^+,7/2^+) (5/2,7/2^+) (5/2,7/2^+) (5/2,7/2^+)$	1053.65 570.88 806.11 393.20 1130.80 806.11 806.11	$(5/2^+,7/2^+) (5/2,7/2) (5/2^+,7/2^+) + (5/2,7/2^+) (5/2^+,7/2^+) (5/2^+,7/2^+) (5/2^+,7/2^+) $						
366.2 1	93 5	393.20	+	27.00	3/2+	M1,E2	0.0157 14	$\alpha(K)\exp=0.011 \ 3$ $\alpha(K)=0.0135 \ 11; \ \alpha(L)=0.0018 \ 3; \ \alpha(M)=0.00034 \ 6; \ \alpha(N+)=6.3\times10^{-5} \ 9$ $\alpha(N)=6.0\times10^{-5} \ 9; \ \alpha(O)=3.12\times10^{-6} \ 12$			
x370.6 <i>I</i> 372.3 <i>I</i> 379.0 <i>I</i> 393.2 2	26.3 <i>19</i> 11.8 <i>11</i> 2.1 <i>4</i> 6.5 9	399.13 806.11 393.20	(3/2 ⁻ ,5/2) (5/2 ⁺ ,7/2 ⁺)	27.00 427.27 0	3/2 ⁺ (7/2 ⁺) 1/2 ⁺						
399.1 2	83 13	399.13	(3/2 ⁻ ,5/2)	0	1/2+	[E1]	0.00369 6	α (K)exp=0.006 +4-2 α =0.00369 6; α (K)=0.00323 5; α (L)=0.000382 6; α (M)=7.29×10 ⁻⁵ 11; α (N+)=1.366×10 ⁻⁵ 20 α (N)=1.293×10 ⁻⁵ 19; α (O)=7.29×10 ⁻⁷ 11 α (K)exp: given for 399.1 γ +400.1 γ . Mult.: if 400.1 γ is E2 from decay scheme, the combined α (K)exp suggests the 399 1 γ to be E1 or possibly M1 E2			
400.1 2	12.0 18	427.27	(7/2 ⁺)	27.00	3/2+	[E2]	0.01294	$\alpha(K) \exp = 0.006 + 4 - 2$ $\alpha(K) = 0.01108 \ 16; \ \alpha(L) = 0.001514 \ 22; \ \alpha(M) = 0.000292 \ 5;$ $\alpha(N+) = 5.36 \times 10^{-5} \ 8; \ \alpha(O) = 2.48 \times 10^{-6} \ 4$ $\alpha(K) \exp: \text{ given for } 399.1\gamma + 400.1\gamma.$ Mult.: from decay scheme.			
407.1 <i>I</i> 412.9 <i>I</i> 431.9 2 439.2 <i>I</i> 472.9 <i>I</i> 482.7 <i>I</i> 497.9 <i>I</i> 517.5 <i>3</i> 524.5 3 528.9 3 531.1 <i>I</i>	21.2 18 9.2 11 2.7 4 8.1 8 4.8 6 17.7 13 29.5 21 0.8 2 2.5 5 4.0 8 7.1 9	806.11 806.11 1086.73 866.48 1278.80 1053.65 525.04 1086.73 924.24 1053.65 924.24	$\begin{array}{c} (5/2^+,7/2^+)\\ (5/2^+,7/2^+)\\ (5/2,7/2,9/2)\\ (5/2,7/2,9/2)\\ (5/2^+,7/2^+)\\ (5/2^+,7/2^+)\\ (3/2^-,5/2,7/2^+)\\ (5/2,7/2^+)\\ (5/2,7/2^+)\\ (5/2,7/2^+)\\ (5/2,7/2^+)\\ (5/2,7/2^+)\end{array}$	399.13 393.20 655.49 427.27 806.11 570.88 27.00 570.88 399.13 525.04 393.20	$(3/2^-,5/2)$ + (5/2,7/2) $(7/2^+)$ $(5/2^+,7/2^+)$ (5/2,7/2) $3/2^+$ (5/2,7/2) $(3/2^-,5/2)$ $(3/2^-,5/2,7/2^+)$ +						

4

From ENSDF

 $^{119}_{48}\text{Cd}_{71}\text{-}4$

L

¹¹⁹Ag β^- decay (2.1 s) **1975Ka09** (continued)

$\gamma(^{119}Cd)$ (continued)

Eγ	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
543.9 1	29.0.20	570.88	(5/2,7/2)	27.00	3/2+	
561.2.2	2.2.4	1086.73	$(5/2,7/2^+)$	525.04	$(3/2^{-}, 5/2, 7/2^{+})$	
570.8 1	5.8 9	570.88	(5/2,7/2)	0	1/2+	
578.0 2	3.3 6	806.11	$(5/2^+, 7/2^+)$	228.26	$(7/2^{-}, 9/2^{-})$	
595.7 1	6.4 6	1401.76	$(5/2^+, 7/2^+)$	806.11	$(5/2^+, 7/2^+)$	
604.7 <i>3</i>	2.6 4	1471.39?		866.48	(5/2,7/2,9/2)	
626.4 2	100	1053.65	$(5/2^+, 7/2^+)$	427.27	$(7/2^+)$	α (K)exp<0.004
						$\alpha(K)$ exp: given for 626.4 γ +628.2 γ .
						I _γ : 13.9 <i>16</i> % (1988RuZW).
628.2 2	21 3	655.49	(5/2,7/2)	27.00	3/2+	$\alpha(K)\exp{<0.004}$
						α (K)exp: given for 626.4 γ +628.2 γ .
638.0 5	2.2 5	866.48	(5/2,7/2,9/2)	228.26	$(7/2^-, 9/2^-)$	
654.4 2	32 5	1053.65	$(5/2^+, 7/2^+)$	399.13	$(3/2^{-}, 5/2)$	
656.1 2	14.3 22	655.49	(5/2,7/2)	0	1/2+	
660.4 <i>1</i>	54 <i>5</i>	1053.65	$(5/2^+, 7/2^+)$	393.20	+	
693.4 <i>2</i>	4.1 7	1086.73	$(5/2,7/2^+)$	393.20	+	
720.4 1	4.1 8	1245.57?		525.04	$(3/2^{-}, 5/2, 7/2^{+})$	
^x 727.1 2	2.5 5					
731.0 4	1.2 4	1130.80	$(5/2,7/2^+)$	399.13	$(3/2^{-}, 5/2)$	
732.7 4	2.2 5	1538.82	$(5/2,7/2^+)$	806.11	$(5/2^+, 7/2^+)$	
737.6 1	10.0 12	1130.80	$(5/2,7/2^+)$	393.20	+	
746.3 <i>4</i>	4.4 17	1401.76	$(5/2^+, 7/2^+)$	655.49	(5/2,7/2)	
753.6 2	5.4 13	1278.80	$(5/2^+, 7/2^+)$	525.04	$(3/2^{-}, 5/2, 7/2^{+})$	
779.2 1	42 3	806.11	$(5/2^+, 7/2^+)$	27.00	3/2+	
806.2 2	1.1 4	806.11	$(5/2^+, 7/2^+)$	0	1/2+	
825.4 1	20.2 16	1053.65	$(5/2^+, 7/2^+)$	228.26	$(1/2^{-}, 9/2^{-})$	
830.8 2	4.9 6	1401.76	$(5/2^+, 7/2^+)$	570.88	(5/2, 7/2)	
846.9 2	4.0 5	1245.57?	(5/0+ 7/0+)	399.13	(3/2, 5/2)	
851.4 1	18.1 15	1278.80	$(5/2^+, 1/2^+)$	427.27	$(1/2^{+})$	
872.3 4	3.1 8	1925.51	$(5/2^+, 1/2^+)$	1053.65	$(5/2^+, 1/2^+)$	
8/7.0 2	1.90	1401.70	$(5/2^+, 7/2^+)$	323.04	(3/2, 3/2, 1/2)	
885.4 5	4.5 8	12/8.80	$(5/2^{+}, 1/2^{+})$ $(5/2, 7/2^{+})$	393.20	2/0+	
×026.0.2	2.9 12	924.24	$(3/2, 7/2^{+})$	27.00	5/2	
×050.4.5	3.00					
074.5.2	5.1 12 4.6 0	1401 76	$(5/2^+, 7/2^+)$	127 27	$(7/2^+)$	
1002.6.2	4.0 <i>9</i>	1401.70	$(5/2^+,7/2^+)$	300 13	(1/2) $(3/2^{-} 5/2)$	
1002.0 2	21.6.20	1401.70	$(5/2^+,7/2^+)$	303 20	(3/2 ,3/2)	
1014.0.3	21.0 20	1538.82	$(5/2,7/2^+)$	525.20	$(3/2^{-} 5/2 7/2^{+})$	
1026 5 1	58 5	1053.65	$(5/2^+,7/2^+)$	27.00	3/2+	
1044 3 3	0.84	1471 397	(0,2 ,1/2)	427 27	$(7/2^+)$	
1053.8 /	4.2 6	1053.65	$(5/2^+, 7/2^+)$	0	$1/2^+$	
^x 1064.8 3	3.8.9		(-/= ,//=)	Ŭ	-, -	
100.000	0.0 /					

$\gamma(^{119}Cd)$ (continued)

Eγ	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1111.0 3	2.2 5	1538.82	$(5/2,7/2^+)$	427.27	$(7/2^+)$
1140.2 3	0.9 3	1538.82	$(5/2,7/2^+)$	399.13	$(3/2^{-}, 5/2)$
1145.1 <i>3</i>	1.9 4	1538.82	$(5/2,7/2^+)$	393.20	+
1173.3 2	10.0 14	1401.76	$(5/2^+, 7/2^+)$	228.26	$(7/2^{-}, 9/2^{-})$
1244.6 <mark>&</mark> 3	2.2 4	1471.39?		228.26	$(7/2^{-}, 9/2^{-})$
1251.9 2	7.7 14	1278.80	$(5/2^+, 7/2^+)$	27.00	3/2+
1257.5 <i>3</i>	2.0 4	1471.39?		213.90	$(9/2^{-})$
1274.7 <i>3</i>	3.0 9	2676.52	$(5/2^+, 7/2^+)$	1401.76	$(5/2^+, 7/2^+)$
^x 1333.2 2	4.6 8				
1374.8 2	12.3 16	1401.76	$(5/2^+, 7/2^+)$	27.00	3/2+
1401.6 2	8.3 7	1401.76	$(5/2^+, 7/2^+)$	0	$1/2^{+}$
^x 1426.5 3	1.3 5				
1512.7 5	2.0 4	1538.82	$(5/2,7/2^+)$	27.00	3/2+
1526.6 2	13.1 15	1925.51	$(5/2^+, 7/2^+)$	399.13	$(3/2^{-}, 5/2)$
1532.7 5	3.0 9	1925.51	$(5/2^+, 7/2^+)$	393.20	+
1689.0 2	8.1 11	2088.18	$(5/2^+, 7/2^+)$	399.13	$(3/2^{-}, 5/2)$
1695.5 <i>3</i>	5.5 10	2088.18	$(5/2^+, 7/2^+)$	393.20	+
1800.2 <i>3</i>	4.0 10	2605.79?		806.11	$(5/2^+, 7/2^+)$
^x 1824.7 4	4.5 17				
^x 1851.9 <i>3</i>	5.8 12				
1898.3 2	23.0 20	1925.51	$(5/2^+, 7/2^+)$	27.00	3/2+
1925.0 <i>3</i>	8.7 13	1925.51	$(5/2^+, 7/2^+)$	0	$1/2^{+}$
^x 1970.3 4	4.0 14				
1996.9 2	6.3 7	2424.18	$(5/2^+, 7/2^+, 9/2^+)$	427.27	$(7/2^+)$
^x 2028.2 2	10.0 9				
2043.6 5	1.0 4	2442.53	$(5/2^+, 7/2^+)$	399.13	$(3/2^{-}, 5/2)$
2050.1 5	1.0 4	2442.53	$(5/2^+, 7/2^+)$	393.20	+
2060.7 5	40.5 50	2088.18	$(5/2^+, 7/2^+)$	27.00	3/2+
2087.9 <i>3</i>	5.8 12	2088.18	$(5/2^+, 7/2^+)$	0	$1/2^{+}$
2151.7 4	4.1 9	2676.52	$(5/2^+, 7/2^+)$	525.04	$(3/2^{-}, 5/2, 7/2^{+})$
2195.9 4	1.9 5	2424.18	$(5/2^+, 7/2^+, 9/2^+)$	228.26	$(7/2^{-}, 9/2^{-})$
2205.3 5	1.2 4	2605.79?		399.13	$(3/2^{-}, 5/2)$
2212.4 5	1.1 5	2605.79?		393.20	+
^x 2302.0 5	3.5 16				
^x 2334.7 6	2.0 5				
2344.2 5	1.5 5	2869.6?		525.04	$(3/2^{-}, 5/2, 7/2^{+})$
*2376.1 5	3.2 9				
2386.2 5	4.0 9	2813.51	$(5/2^+, 7/2^+)$	427.27	$(7/2^+)$
2391.9 7	1.9 7	2605.79?		213.90	$(9/2^{-})$
2415.2 6	3.0 15	2442.53	$(5/2^+, 7/2^+)$	27.00	3/2+
2435.4 7	3.1 12	2862.4	$(5/2^+, 7/2^+, 9/2^+)$	427.27	$(7/2^+)$
2442.0 4	6.0 15	2442.53	$(5/2^+, 7/2^+)$	0	1/2+
2470.9 4	8.7 21	2869.6?		399.13	$(3/2^{-}, 5/2)$

6

					¹¹⁹ Ag β^- dec	ay (2.1 s)	1975Ka09	(continued)			
						γ ⁽¹¹⁹ Cd) (co	ontinued)				
E_{γ}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	E_{γ}	$I_{\gamma}^{\ddagger @}$	E _i (level)	J^π_i	E_f	\mathbf{J}_{f}^{π}
^x 2529.4 5 ^x 2554.2 15 ^x 2563.8 6 ^x 2571 2 5	4.9 <i>1</i> 9 1.0 <i>7</i> 1.2 <i>6</i>					x2722.1 5 x2732.4 7 x2757.2 3	4.0 <i>15</i> 1.6 9 5.7 9				
2633.9 5 2649.5 7 2655 5 4	1.9 6 2.0 5 1.9 6 4 0 8	2862.4 2676.52 2869.62	$(5/2^+, 7/2^+, 9/2^+)$ $(5/2^+, 7/2^+)$	228.26 27.00 213.90	$(7/2^{-},9/2^{-})$ $3/2^{+}$ $(9/2^{-})$	x2768.2 4 2786.4 2 2814.4 7 x2928 6 7	2.7 7 20.2 20 1.7 8	2813.51 2813.51	$(5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$	27.00 0	3/2+ 1/2+
2676.4 <i>3</i> <i>x</i> 2706.9 <i>8</i>	1.1 6 2.4 <i>1</i> 6	2676.52	(5/2 ⁺ ,7/2 ⁺)	0	(9/2)) 1/2 ⁺	x2938.4 3 x2951.8 3	4.7 6 13.7 <i>13</i>				

[†] Additional information 2.
[‡] From 1975Ka09.
[#] From α(K)exp from Ice(K)/Iγ (1975Ka09), unless otherwise noted.
[@] For absolute intensity per 100 decays, multiply by 0.131 5.
[&] Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

¹¹⁹Ag β^- decay (2.1 s) 1975Ka09

¹¹⁹₄₈Cd₇₁

8

¹¹⁹Ag β^- decay (2.1 s) 1975Ka09

 $^{119}_{48}\text{Cd}_{71}$

119 Ag β^- decay (2.1 s) 1975Ka09

$\frac{119}{10}$ Ag β^- decay (2.1 s) 1975 Ka09

Decay Scheme (continued)

¹¹⁹₄₈Cd₇₁