¹¹⁸I β^+ decay (13.7 min) 1985StZU

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao	NDS 75,99 (1995)	1-Feb-1993

Parent: ¹¹⁸I: E=0.0; $J^{\pi}=2^{-}$; $T_{1/2}=13.7 \text{ min } 5$; $Q(\beta^{+})=7040 \ 80$; $\%\beta^{+}$ decay=100.0

1985Sh04, 1985Sh16, 1985St29: ⁹³Nb(³²S,X), ⁹³Nb(³⁴S,X) E=175 MeV; on-line low temperature nuclear orientation, $\gamma\gamma(\theta)$, $\gamma\gamma$ coin.

1985StZU: $E\gamma$ and $I\gamma$ from the 13.7-min+8.5-min combined source. No experimental details were given, but these are the same as the procedure described in the above references.

1987Wa17, 1987WaZL: ce.

Others: 1965An05, 1967La18, 1969Ha08, 1969La17, 1969Sp07, 1970LaZX, 1985RiZV.

The decay scheme has been extracted by evaluator from the 13.7-min+8.5-min combined decay scheme proposed by 1985StZU. The following assumptions are made in separating the two decays: (1) levels deexciting to 0⁺ levels (g.s. and 957.3 keV) and 2⁺ levels (605.6 and 1150.7 keV) are populated by feedings from the 2⁻ parent, and not from the (7⁻) parent. (2) the J^{π} values of levels at 1820, 2150, 2573, 3000, and 3400 keV are adopted as proposed in (α ,2n γ). These levels are populated by feedings from the (7⁻) parent, and not from the 2⁻ parent. (3) levels deexciting to 6⁺ levels (1820 and 2150 keV) are populated by feedings from the (7⁻) parent, and not from the 2⁻ parent.

¹¹⁸Te Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]
0.0 605.56 <i>19</i> 957.33 <i>24</i> 1150.66 <i>19</i> 1206.25 <i>23</i>	0^+ 2^+ 0^+ 2^+ 4^+	1862.92 24 1891.7 3 1944.34 25 1976.1 3 2020.4 3	$1,2^+$ (3) ⁺ 3 ⁻ (4 ⁺)	2372.7 <i>4</i> 2422? 2438.0 <i>4</i> 2500.67 <i>25</i> 2531.5 <i>4</i>	2762.0 <i>4</i> 2813.3? 6 2852.2 <i>4</i> 2862.6 <i>4</i> 3253.33 25
1481.96 <i>19</i> 1517.2 <i>3</i> 1661.4 <i>4</i> 1702.9 <i>3</i>	$1^+, 2^+$ 0^+ $(4)^+$	2229.6 3 2285.2 4 2322.2 3 2352.6 4	(4)+	2571.0 <i>3</i> 2611.4 <i>4</i> 2622.3 <i>4</i> 2730.3 <i>4</i>	3438.8 <i>4</i> 3602.2? <i>6</i>

[†] From a least-squares fit to $E(\gamma' s)$.

[‡] From Adopted Levels.

ε, β^+ radiations

 $E\beta$ measurements: $E\beta$ +=7000 from absorption (1965An05), $E\beta$ +=5500 from scin singles spectrum; also reported from $\gamma\beta$ + coin: (4300 β +)(612 γ), (4900 β +)(600 γ), (5450 β + 150)(605 γ) (1968La18), (5440 β + 100)(605 γ) (1970BeYT).

E(decay)	E(level)	$I\beta^{+\dagger}$	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(3.60 \times 10^3 8)$	3438.8	0.35 4	0.15 2	7.38 7	0.50 5	av Eβ=1167 37; εK=0.254 18; εL=0.0333 23; εM+=0.0088 6
$(3.79 \times 10^3 8)$	3253.33	1.03 7	0.36 3	7.04 6	1.39 8	av Eβ=1249 38; εK=0.220 15; εL=0.0288 20; εM+=0.0076 6
(4.18×10 ³ 8)	2862.6	0.24 2	0.054 7	7.94 7	0.29 3	av Eβ=1432 38; εK=0.161 11; εL=0.0211 14; εM+=0.0056 4
(4.19×10 ³ 8)	2852.2	0.54 6	0.12 2	7.59 7	0.66 7	av Eβ=1436 38; εK=0.160 11; εL=0.0209 14; εM+=0.0055 4
(4.28×10 ³ 8)	2762.0	0.24 2	0.050 6	8.00 7	0.29 3	av Eβ=1479 38; εK=0.149 10; εL=0.0195 13; εM+=0.0051 4
(4.31×10 ³ 8)	2730.3	< 0.20	< 0.041	>8.1	<0.24	av Eβ=1494 38; εK=0.146 10; εL=0.0190 12; εM+=0.0050 4

¹¹⁸I β^+ decay (13.7 min) 1985StZU (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ^{+†}	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
$(4.42 \times 10^3 8)$	2622.3	0.35 3	0.066 8	7.91 6	0.42 4	av Eβ=1544 38; εK=0.134 9; εL=0.0176 11; εM+=0.0046 3
$(4.43 \times 10^3 8)$	2611.4	0.606 8	0.112 7	7.68 5	0.718 4	av $E\beta$ =1549 38; ε K=0.133 9; ε L=0.0174 11; ε M+=0.0046 3
$(4.47 \times 10^3 8)$	2571.0	< 0.45	< 0.080	>7.8	< 0.53	av $E\beta$ =1568 38; ε K=0.129 8; ε L=0.0169 11; ε M+=0.0045 3
$(4.51 \times 10^3 8)$	2531.5	< 0.28	< 0.048	>8.1	< 0.33	av $E\beta$ =1587 38; ε K=0.126 8; ε L=0.0164 10; ε M+=0.0043 3
$(4.54 \times 10^3 8)$	2500.67	1.43 10	0.239 22	7.37 6	1.67 11	av $E\beta$ =1601 38; ε K=0.123 8; ε L=0.0161 10; ε M+=0.0042 3
$(4.60 \times 10^3 8)$	2438.0	< 0.31	< 0.049	>8.1	< 0.36	av $E\beta$ =1631 38; ε K=0.118 7; ε L=0.0153 10; ε M+=0.00404 25
$(4.67 \times 10^3 8)$	2372.7	0.79 9	0.12 1	7.70 7	0.91 10	av $E\beta$ =1662 38; ε K=0.112 7; ε L=0.0146 9; ε M+=0.00386 23
$(4.69 \times 10^3 8)$	2352.6	0.17 3	0.026 4	8.37 8	0.20 3	av $E\beta = 1671 \ 38; \ \varepsilon K = 0.111 \ 7; \ \varepsilon L = 0.0144 \ 9; \ \varepsilon M + = 0.00381 \ 23$
$(4.72 \times 10^3 8)$	2322.2	0.55 4	0.079 7	7.89 5	0.63 4	av $E\beta = 1686 \ 38; \ \varepsilon K = 0.108 \ 7; \ \varepsilon L = 0.0141 \ 9; \ \varepsilon M + = 0.00372 \ 22$
$(4.75 \times 10^3 8)$	2285.2	0.22 3	0.031 4	8.31 7	0.25 3	av $E\beta$ =1703 38; ε K=0.106 6; ε L=0.0138 8; ε M+=0.00363 21
(4.81×10 ³ 8)	2229.6	0.60 5	0.080 9	7.90 6	0.68 6	av $E\beta$ =1729 38; ε K=0.102 6; ε L=0.0133 8; ε M+=0.00349 20
$(5.02 \times 10^3 8)$	2020.4	1.70 15	0.194 21	7.55 6	1.89 17	av $E\beta$ =1828 38; ε K=0.088 5; ε L=0.0115 7; ε M+=0.00303 17
$(5.06 \times 10^3 8)$	1976.1	1.19 9	0.132 12	7.73 6	1.32 10	av $E\beta$ =1849 38; ε K=0.086 5; ε L=0.0112 7; ε M+=0.00294 16
$(5.10 \times 10^3 8)$	1944.34	7.26 6	0.79 4	6.96 4	8.05 5	av $E\beta$ =1864 38; ε K=0.084 5; ε L=0.0109 6; ε M+=0.00288 16
$(5.15 \times 10^3 8)$	1891.7	1.95 14	0.203 18	7.56 5	2.15 15	av $E\beta$ =1889 38; ε K=0.081 5; ε L=0.0106 6; ε M+=0.00278 15
$(5.18 \times 10^3 8)$	1862.92	2.15 19	0.219 23	7.53 6	2.37 21	av $E\beta$ =1903 38; ε K=0.080 5; ε L=0.0104 6; ε M+=0.00273 15
$(5.34 \times 10^3 8)$	1702.9	2.37 17	0.217 19	7.56 5	2.59 18	av $E\beta$ =1979 38; ε K=0.072 4; ε L=0.0094 5; ε M+=0.00247 13
$(5.38 \times 10^3 8)$	1661.4	0.32 4	0.029 4	8.45 7	0.35 4	av $E\beta$ =1999 38; ε K=0.070 4; ε L=0.0091 5; ε M+=0.00240 13
$(5.52 \times 10^3 8)$	1517.2	0.51 4	0.041 4	8.31 5	0.55 4	av $E\beta$ =2067 39; ε K=0.064 4; ε L=0.0083 5; ε M+=0.00220 11
$(5.56 \times 10^3 8)$	1481.96	5.9 6	0.47 5	7.26 6	6.4 6	av $E\beta$ =2084 39; ε K=0.063 4; ε L=0.0082 4; ε M+=0.00215 11
$(5.83 \times 10^3 8)$	1206.25	3.9 8	0.26 5	7.55 9	4.2 8	av $E\beta = 2216\ 39$; $\varepsilon K = 0.053\ 3$; $\varepsilon L = 0.0070\ 4$; $\varepsilon M + = 0.00183\ 9$
$(5.89 \times 10^3 8)$	1150.66	6211	0407	7 38 9	6612	$E(\beta^+)=4900$ from $(\beta^+)(600\gamma)$ coin (1968La18). av $E\beta=2243$ 39: $\epsilon K=0.0517$ 25: $\epsilon I=0.0067$ 4:
$(5.09\times10^3 \text{ e})$	057.22	1.1.2	0.14 4	10.0214 12	1.0.2	$\varepsilon M + = 0.001779$ $\varepsilon M + = 0.001779$
(0.08×10 ² 8)	957.55	1.1 3	0.14 4	10.02*** 12	1.2.5	av $E\beta = 2518 58$; $EK = 0.099 5$; $EL = 0.0150 6$; EM + = 0.00342 16
(6.43×10 ³ 8)	605.56	32.8 14	1.54 9	6.87 4	34.3 15	av $E\beta = 2504 \ 39; \ \varepsilon K = 0.0385 \ 17; \ \varepsilon L = 0.00501 \ 22; \ \varepsilon M + = 0.00132 \ 6$
$(7.04 \times 10^3 8)$	0.0	16.7	1.27	9.3 ¹ <i>u</i>	18.0	E(β ⁺)=5440 100 (1970Be Y I), 5450 150 (1968La18). av Eβ=2769 38; εK=0.0604 24; εL=0.0079 4; εM+=0.00209 9

 † Absolute intensity per 100 decays.

¹¹⁸I β^+ decay (13.7 min) 1985StZU (continued)

$\gamma(^{118}\text{Te})$

Iy normalization: From I($\varepsilon + \beta^+$ to g.s.)=18.0 % assumed based on systematics of log $f^{1u}t$ value for feeding from 2⁻ parent to 0⁺ g.s..

E_{γ}^{\dagger}	Ι _γ & <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ	$I_{(\gamma+ce)}^{e}$	Comments
331.0 3	0.30 3	1481.96	$1^+, 2^+$	1150.66 2+				
351.7 <i>3</i>	2.43 25	957.33	0^{+}	605.56 2+				
366.5 <i>3</i>	0.25 3	1517.2	0^{+}	1150.66 2+				
496.8 <i>3</i>	0.82 ^{<i>a</i>} 8	1702.9	$(4)^+$	1206.25 4+	M1+E2	+1.0 + 3 - 2		δ : from (α ,2n γ).
524.4 3	0.88 10	1481.96	1+,2+	957.33 0+				
528.4 ^J 3	0.13 1	2229.6	$(4)^+$	$1702.9 (4)^+$				
545.0 3	10.5 11	1150.66	2+	605.56 2+	M1+E2	+17 +27-7		Mult., δ : from γ -linear pol (1985RiZV).
551.8 <i>3</i>	1.55 ^{<i>a</i>} 16	1702.9	(4)+	1150.66 2+	E2		L	
560	0.010 2	1517.2	0+	957.33 0+	E0 ^{<i>a</i>}		0.010 ⁰ 2	E_{γ} : 1987Wa17 deduced intensity of 560γ: I γ =0.3 <i>I</i> and α (K)exp=0.026 <i>8</i> ; α (K)(M2)=0.019. However, existence of the γ has not been confirmed by other authors.
600.6 <i>3</i>	8.4 ^a 8	1206.25	4+	605.56 2+	E2			, ,
605.6 <i>3</i>	81.1 ^{<i>a</i>}	605.56	2+	$0.0 0^+$	E2			
626.7 [‡] 3	< 0.14	2571.0		1944.34 3-				
685.2 <i>3</i>	0.42 ^{<i>a</i>} 4	1891.7	(3)+	1206.25 4+				
712.5 3	0.45 5	1862.92	$1,2^{+}$	1150.66 2+				
719.6 [‡] <i>f</i> 3	< 0.34	2422?		1702.9 $(4)^+$				
738.1 <i>3</i>	<0.35 ^a	1944.34	3-	1206.25 4+				
741.2 <i>3</i>	1.38 ^{<i>a</i>} 14	1891.7	$(3)^{+}$	1150.66 2+	M1+E2	-9.5		Mult., δ : from (α ,2n γ), $\Delta\delta$ =+40-190.
770.0 <i>3</i>	0.44^{a} 4	1976.1	(4^{+})	1206.25 4+				
793.7 3	< 0.09 ^{<i>a</i>}	1944.34	3-	1150.66 2+				
840.0 3	0.32 3	2322.2		1481.96 1+,2+				
809.7 3	0.30 3	2020.4		1150.00 2				
*874.1"	5.96.60	1401.06	1+ 0+	$(05.5(-2)^{+})$	M1 . F2	0.50 .5 (
8/0.4 3	5.80 00	1481.90	$1^{+}, 2^{+}$ $1^{+}, 2^{+}$	$005.30 2^{\circ}$ 057.22 0 ⁺	MI+E2	-0.38 +3-0		Mult., o: from γ -linear poi (1985K1Z V).
903.7 3	0.23 3	1517.2	$^{1,2}_{0^+}$	605 56 2 ⁺				
057	0.022.3	057.22	0+	0.0 0+	FOd		0.022^{b} 2	E : 1087Wa17 deduced intensity of 057ay large 2 l and
957	0.025 5	957.55	0	0.0 0	EU		0.025* 5	α (K)exp=0.08 2; α (K)(M2)=0.0044. However, existence of the 957 γ has not been confirmed by other authors.
1018.0 <i>3</i>	0.36 4	2500.67		1481.96 1+,2+				,
1023.2 3	0.56 6	2229.6	$(4)^+$	1206.25 4+				
1055.8 <i>3</i>	0.37 4	1661.4		$605.56\ 2^+$				
1079.0 <i>3</i>	0.15 2	2229.6	$(4)^+$	1150.66 2+				
1097.5 3	0.34 ^{<i>a</i>} 3	1702.9	$(4)^+$	$605.56\ 2^+$				
1150.6 <i>3</i>	3.9 ^{<i>a</i>} 4	1150.66	2+	$0.0 0^+$	E2			

ω

 $^{118}_{52}$ Te₆₆-3

				11	${}^{8}\mathbf{I}\beta^{+}$ decay ((13.7 min) 19	985StZU (con	ntinued)
						γ ⁽¹¹⁸ Te) (conti	nued)	
E_{γ}^{\dagger}	Ι _γ & <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^C	δ	$I_{(\gamma+ce)}^{e}$	Comments
$1171.7 \ 3^{x}1231.2^{\#}$	0.34 3	2322.2		1150.66 2+				
1231.7 [‡] <i>3</i>	< 0.38	2438.0		1206.25 4+				
1257.0 3	$2.10\ 20$	1862.92	$1,2^+$	$605.56 \ 2^+$				
1200.5 5	0.45 ⁴ 5	2521.5	(3)	1206.25 4^+				
1325.27 5	<8.11 ^a	1944.34	3-	605.56 2 ⁺	E1+M2	+0.03 +5-7		Mult.: from γ -linear pol (1985RiZV) and α (K)exp. δ : from γ -linear pol. Other: -0.025 35 from $\gamma\gamma(\theta)$ (1985Sh04). α (K)exp=0.0002 L (1985Sh04)
1350.3 <i>3</i>	0.75 8	2500.67		1150.66 2+				$u(\mathbf{K})c_{\mathbf{k}}p=0.0002$ 1 (19050104).
1364.7 [‡] <i>3</i>	< 0.41	2571.0		1206.25 4+				
1370.4 <i>3</i>	0.94 ^a 9	1976.1	(4+)	605.56 2+				
1390.4 3	0.32 3	3253.33		$1862.92 1,2^+$				
1460.7 3	0.75	2620.4		$1150.66 2^+$				
1482.0 3	0.72 7	1481.96	$1^+, 2^+$	$0.0 0^+$				
1517	0.0009 5	1517.2	0^{+}	0.0 0+	$\mathrm{E0}^d$		0.0009 ^b 5	E_{γ} : 1987Wa17 deduced intensity of 1517 γ : I γ =0.13 4 and α (K)exp=0.006 3; α (K)(M2)=0.0014. However, existence of the γ has not been confirmed by other authors.
1524.0 [‡] 3	< 0.25	2730.3		1206.25 4+				
1662.6 ^f 3	0.27 3	2813.3?		1150.66 2+				
1679.6 <i>3</i>	0.26 3	2285.2		$605.56 2^+$				
1747.03	0.21 3	2352.6		$605.56 \ 2^+$ $605.56 \ 2^+$				
1771.8 3	0.95 10	3253.33		1481.96 1+,2	+			
1895.5 <i>3</i>	0.63 6	2500.67		605.56 2+				
2016.7 3	0.44 4	2622.3		$605.56 2^+$				
2102.23	0.69 /	3253.33		1150.66 2'	÷			
2120.2^{3} 3	0.28 3	3602.2? 2762.0		$1481.96 1^{+},2$ 605 56 2^{+}				
2246.6 3	0.69 7	2852.2		$605.56 2^+$				
2257.0 3	0.30 3	2862.6		605.56 2+				
2288.1 3	0.52 5	3438.8		1150.66 2+				
*2327.3 [#]								
^x 2648.1 [@]								
*2769.3 *								
^2854.2 [#]								
*2932.9 *								

4

From ENSDF

 $^{118}_{52}$ Te $_{66}$ -4

 γ (¹¹⁸Te) (continued)

- [†] From 1985StZU; uncertainty of 0.3 keV was assumed (evaluator).
- [‡] Isomeric assignment is uncertain.
- [#] Reported in 1985Sh16 only. No intensity was given by authors.
- [@] Reported in 1985Sh16 and 1985St29. No intensity was given by authors.
- [&] From 1985StZU. Relative to I(605.6γ)=100 for the combined source, unless otherwise noted. Uncertainty of 10% was assumed (evaluator).
- ^{*a*} From $I\gamma = I\gamma(1985StZU) I\gamma(8.5 \text{ min activity})$.
- ^b Calculated by Ice(E0)=icek(K)(E0)(1.12) for a correction L1-shell contribution. Values are relative to I(606.5 γ)=100.
- ^c From on-line nuclear orientation (1985StZU) unless otherwise noted.
- ^d Mult confirmed by $\alpha(K)$ exp value for a spurious, hypothetical γ in corresponding energy region: the value is greater than the theoretical M2 (1987Wa17).
- ^e For absolute intensity per 100 decays, multiply by 0.957 5.
- ^f Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹¹⁸I β^+ decay (13.7 min) 1985StZU

¹¹⁸I β^+ decay (13.7 min) 1985StZU

$\frac{118}{16}$ **I** β^+ **decay (13.7 min) 1985** StZU

$\underline{\text{Decay Scheme (continued})}$ Intensities: I_(γ+ce) per 100 parent decays

¹¹⁸₅₂Te₆₆