¹¹⁶Sn(α ,2n γ) 1982Va10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao	NDS 75,99 (1995)	1-Feb-1993

1982Va10 E(α)=22-33 MeV; excitation function, enriched target, semi γ , $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma\gamma(t)$, linear polarization. 1982Ch01 E(α)=24 MeV; enriched target, semi γ , $\gamma\gamma$ coin, $\gamma(\theta)$. Others: 1969Lu05, 1969Be04, 1970Wa13, 1973Wy01.

¹¹⁸ Te L	evels
---------------------	-------

E(level) [†]	J ^{π &}	$T_{1/2}^{a}$	Comments
0.0#	0^{+}		
$605.710^{\#}20$	0 2+		
$057.6^{\ddagger}.20$	2		
957.01 5	2+		
$1206.41^{\#}$	2 4+		
1402.0 2	+ 1+ 0+		
1482.9* 3	1,2, 1+		
1702.30 3	4 (+		
$1820.82^{"}$ 4	0		
1891.97 6	3^+		
2150.11 4	0		
2367.75 6	5 ⁺		
2517.22 11	3		
2573.88" 5	8'		
2919.36 ^w 6	7+		
2999.42 7	8+		
2999.73 9	/	0.22 mg 8	T is from controld shift of $190_{2}(t)$ (1092)(10)
5189.10 9	0	0.25 118 8	$1_{1/2}$: from centroid-smit of 189 $\gamma(t)$ (1982 value).
3359.90" 6	10'		
3400.07 0	9 10 ⁺		
3460 42 8	0 ⁻		
3586 56@ 8	0+		
3679 90 14	9 0-		
3834.59.8	$(8.10)^+$		
3881.22 10	10-		
4138.02 8	11-		
4171.98 6	12+		
4219.30 [#] 12	12^{+}		
4220.50 11	11-		
4288.42 14	$(10, 12)^{-}$		
4347.74 [@] 10	11^{+}		
4582.08 11	$(10, 12)^{-}$		
4855.71 14	$(11,13)^{-12-1}$		
480/.03 12	15 14 [±]		
4743.73 0	14		
5122.73" 15	14'		
3340.03 13	(14,15)		

[†] From a least-squares fit to $E(\gamma' s)$ (evaluator).

[±] From 1982Ch01.
[#] Member of quasi ground-state band.

¹¹⁶Sn(α ,2n γ) **1982Va10** (continued)

¹¹⁸Te Levels (continued)

[@] $\Delta J=2$ band built on 3⁺ state.

& Given by 1982Va10 based on $\gamma(\theta)$, γ -linear polarization and assumption that all stretched Q transitions are E2, and also based

- on J^{π} previously established for 600 (2⁺), 1151 (2⁺), 1206 (4⁺), 1702 (4⁺), 1821 (6⁻), 2517 (5⁻) and 2574 (8⁺) levels.
- ^{*a*} Time distribution measurements indicated no evidence for delayed transitions with $T_{1/2} \ge 1.5$ ns in energy range between 150 and 1500 keV, except for the 189 γ (1982Va10).

$\gamma(^{118}\text{Te})$

 α (K)exp from Ice(K) and correction factors for Ice(θ) (1973Wy01), and I γ (1982Va10). Values are normalized to α (K)(E2)=0.00414 for 605.7 γ .

E_{γ}^{\dagger}	Ι _γ #	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	Comments
189.43 2	3.07 6	3189.16	8-	2999.73	7-	M1+E2	+0.20 2	
329.33 3	7.21 9	2150.11	6+	1820.82	6+	M1+E2	+0.01 5	
351.9 [‡] 3	41	957.6		605.710	2+			
400.69 ^{<i>d</i>} 10	1.8 ^{<i>d</i>} 2	3400.07	9-	2999.42	8+	D		
400.69 ^d 10	0.8 ^d 1	5346.65	(14,15)	4945.95	14^{+}			
407.20 10	0.70 5	4288.42	$(10, 12)^{-}$	3881.22	10^{-}	E2 ^b		
445.25 5	1.81 4	3444.67	10^{+}	2999.42	8+	E2 ^b		
447.40 5	1.70 5	2150.11	6+	1702.56	4+	E2 ^b		
461.00 8	1.20 8	3460.42	9-	2999.42	8+	D+Q	-0.07 + 5 - 7	
475.83 7	1.06 5	2367.75	5+	1891.97	3+	E2 ^D		
496.00 9	2.0 1	1702.56	4+	1206.41	4+	M1+E2	+1.0 + 3 - 2	
540.6 1	1.01 5	4220.50	11-	3679.90	9-	E2		
545.12 3	5.97 9	1150.86	2+	605.710	2+	E2 ⁰		
551.60 ^{c@} 5	<6.75 [°]	1702.56	4+	1150.86	2^{+}	[E2]		
551.60 ^{<i>c</i>} 5	<6.75 [°]	2919.36	7+	2367.75	5+	[E2]		
600.71 2	85 2	1206.41	4^+	605.710	2^+	E2		α (K)exp=0.0053 <i>11</i> ; α (K)=0.00423.
614 42 2	61 /	005.710	2* 6 ⁺	0.0 1206.41	$\frac{0}{4^+}$	[E2] F2		$\alpha(K) = 0.0032$ 7: $\alpha(K) = 0.00399$
635.21 8	0.63 6	4855.71	$(11.13)^{-}$	4220.50	11-	D.O		$u(\mathbf{R}) e_{\mathbf{R}} = 0.00527, u(\mathbf{R}) = 0.00577.$
665.2 1	0.41 6	2367.75	5+	1702.56	4+	M1+E2	+0.9 +13-4	
667.19 5	1.88 9	3586.56	9+	2919.36	7+	E2 ^b		
692.05 4	2.95 10	3881.22	10-	3189.16	8-	E2 ^b		
696.4 <i>1</i>	1.85 9	2517.22	5-	1820.82	6+	D		
700.86 5	1.82 8	4582.08	$(10, 12)^{-}$	3881.22	10-	D,Q		$\delta = -0.53 + 13 - 8$ if M1+E2.
727.29 7	1.63 7	4171.98	12+	3444.67	10^{+}	E2 ^b		
729.63 9	1.55 8	4867.65	13-	4138.02	11-	E2 ^b		
737.94 5	3.6 1	4138.02	11-	3400.07	9-	E2 ^b		
741.17 7	1.1 I	1891.97	3^+	1150.86	2+	M1+E2	-9.5	$\Delta \delta = +40-190.$
/53.06 3	26.5 9	2573.88	8	1820.82	6	E2		α (K)exp=0.0024 5; α (K)=0.00240. Mult.: stretched Q, and E2 from α (K)exp.
761.18 5	0.86 5	4347.74	11+	3586.56	9+	E2 ^b		
769.26 7	1.45 9	2919.36	7+	2150.11	6+	D		δ : given as $\delta = 0.00 + 3 - 18$.
773.97 4	1.14 4	4945.95	14+	4171.98	12^{+}	E2 ^b		
786.02 3	11.2 5	3359.90	10^{+}	2573.88	8+	E2 ^b		
812.09 4	2.20 7	4171.98	12+	3359.90	10^{+}	E2 ^b		
826.19 4	4.87 8	3400.07	9-	2573.88	8+	D		

Continued on next page (footnotes at end of table)

¹¹⁶Sn(α ,2n γ) 1982Va10 (continued)

$\gamma(^{118}\text{Te})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π} Mult. ^{<i>a</i>}	δ^a	Comments
835.17 5	1.68 5	3834.59	(8,10)+	2999.42 8	+ D,Q		$\delta = 0.6 \ I$ if M1+E2.
849.3 2	9.7 <mark>&</mark> 2	2999.42	8+	2150.11 6	+ E2 ^b		
849.6 2	1.1 <mark>&</mark> 2	2999.73	7-	2150.11 6	+ D		
859.4 1	3.0 ^{&} 2	4219.30	12^{+}	3359.90 10	0^{+} (E2) ^b		
860.6 1	1.1 ^{&} 1	4220.50	11-	3359.90 10	0+ D		
870.79 <i>3</i>	2.26 8	3444.67	10^{+}	2573.88 8	+ Q		Mult.: from 1987ClZY.
877.2 [‡] 3	8 1	1482.9	$1^+, 2^+$	605.710 2	+		
886.55 9	1.1 1	3460.42	9-	2573.88 8	+ D+Q	-0.07 + 4 - 6	
903.43 9	0.46 8	5122.73	14 ⁺ 6 ⁺	4219.30 12	2+ + 0		
943.744	2.1	1702.56	0 4 ⁺	1200.41 4	+ E2		$M_{\rm rel}$ (1082Ch01)
1097.2* 3	$\frac{51}{122}$	2919 36	4 ⁺ 7 ⁺	1820.82 6 ⁻	+ E2 + M1+F2	-23+9-15	Mult.: from $\gamma(\theta)$ (1982Ch01).
1106.0 3	2.1 2	3679.90	, 9 ⁻	2573.88 8 ⁻	+ D	2.5 19 15	
1150.7 2	1.6 1	1150.86	2+	0.0 0	+ Q		
1161.2 <i>1</i>	1.9 <i>1</i>	2367.75	5+	1206.41 4	+ M1+E2	+7.2 +5-12	
1178.91 9	7.1 <i>1</i>	2999.73	7-	1820.82 6	+ E1+M2	+0.04 2	
1286.1 2	1.5 1	1891.97	3+	605.710 2	+ M1+E2	-1.7 + 2 - 1	
1483 + <i>e</i>		1482.9	$1^+, 2^+$	0.0 0	+		E_{γ} : from authors' drawing.

[†] From 1982Va10 unless otherwise noted.
[‡] From 1982Ch01.
[#] Relative to I(605.7γ)=100 at E(α)=32 MeV (1982Va10).

[@] Unresolved doublet. $\gamma(\theta)$ data was given for a complex transition, but authors considered each γ to be stretched E2.

[&] Derived from coincidence data.

 a From $\gamma(\theta)$ and $\gamma\text{-linear polarization, unless otherwise noted.$

^b Stretched Q from $\gamma(\theta)$, and RUL for T_{1/2}<1.5 ns rules out M2.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

¹¹⁶Sn(α ,2n γ) 1982Va10

4

¹¹⁶Sn(α ,2n γ) 1982Va10

Level Scheme (continued)

