Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	14-Jan-2022		

 $O(\beta^{-})=13710 SY; S(n)=3220 SY; S(p)=14890 SY; O(\alpha)=-10760 SY$ 2021Wa16

- 1995CzZZ (short conference paper): possible identification of ¹¹⁸Tc in ⁹Be(²³⁸U,f) at 750 MeV/nucleon at GSI facility. But in subsequent published works (1997Be70,1998Do08) by the same group, there was no mention of the formation or identification of the ¹¹⁸Tc isotope; the heaviest Tc isotope identified was ¹¹⁷Tc in 1997Be70 and ¹¹⁵Tc in 1998Do08 (where a Pb target was used instead of Be). In 1995CzZZ, there was no detailed discussion about the formation of new isotopes, ¹¹⁸Tc was simply shown in the chart of nuclides figure 2 in their paper. In the absence of sufficient confirmatory evidence from the same experimental group (1994Be24,1995CzZZ,1997Be70,1998Do08), the identification of ¹¹⁸Tc remained uncertain until the work by 2010Oh02.
- 2010Oh02: ¹¹⁸Tc nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹¹⁸Tc nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q figure 2 in 2010Oh02, about 400 counts were assigned to ¹¹⁸Tc isotope. (Q and Q(β^-)1 charge states).
- 2013So17: ¹¹⁸Tc isotope produced in ⁹Be(²³⁸U,X) reaction at 345 MeV/nucleon at RIBF-RIKEN facility. Fragments identified by Zero-degree spectrometer which analyzed events based on B ρ -tof- Δ E. Measured E γ , I γ , E β , (fragment) γ -coin, $\beta\gamma$ -coin, $\gamma\gamma$ -coin.
- 2015Lo04: ¹¹⁸Tc nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹¹⁸Tc was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹¹⁸Tc isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

Production cross sections and yields of ¹¹⁸Tc:

2021Su01: measured production cross section in ⁹Be(²³⁸U,F), E=345 MeV/nucleon at RIBF-RIKEN facility.

2020Su23: measured production cross section in ⁹Be(¹³²Sn,X), E=278 MeV/nucleon at RIBF-RIKEN facility.

2019Pe09: measured production σ in ²⁰⁸Pb(²³⁸U,F), E=950 MeV/nucleon at GSI facility.

Theoretical calculations: two primary reference for half-lives and decay mode from the NSR database available at

www.nndc.bnl.gov/nsr/ are listed in the 'document' records in this dataset. Additional information 1.

¹¹⁸Tc Levels

E(level)	T _{1/2}	Comments		
0	30 ms 4	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$		
		Only β^- decay mode is expected, followed by delayed-neutron decays, thus 100% β^- decay is assigned by inference.		
		Theoretical $T_{1/2}=30.4$ ms; $\%\beta^{-}n=29$; $\%\beta^{-}2n=0$ (2019Mo01).		
		Theoretical $T_{1/2}=51.6$ ms; $\%\beta^{-}n=64.0$, 31.4 ; $\%\beta^{-}2n=1.12$, 0.89 (2021Mi17, $\%\beta^{-}n$ and $\%\beta^{-}2n$ for four different fission barriers).		
		E(level): measured half-life is assumed to correspond to the ground state of ¹¹⁸ Tc, although, from systematics, two long-lived activities are expected, a low-spin and a high-spin (2013So17).		
		J^{π} : there may be two long-lived states according to 2013So17; a high-spin and low-spin with possible configuration= $\pi 5/2[422] \otimes v3/2[541]$ giving rise to $J^{\pi}=1^{-}$ or $4^{-},5^{-},6^{-}$. 2021Ko07 propose 2^{+} for the g.s. from a systematic trend.		
		$T_{1/2}$: measured by 2015Lo04 from (implanted ions) β correlated curves in time and position using maximum likelihood method. Authors compared experimental value with theoretical predictions from several models. Observed activity could be a mixture of two activities as suggested by 2013So17.		

Estimated uncertainties (2021Wa16): 450 for Q(β^{-}), 570 for S(n), 640 for S(p) and Q(α).

 $S(2n)=8220\ 500,\ S(2p)=32640\ 500,\ Q(\beta^{-}n)=8130\ 590\ (syst,\ 2021Wa16).$

 $Q(\beta^2 2n) = 4637 \ 400$, deduced by evaluator from mass excesses in 2021Wa16.