¹¹⁸Sb ε decay (3.6 min) 1982Ka09,1970Ha08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao	NDS 75,99 (1995)	1-Feb-1993

Parent: ¹¹⁸Sb: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=3.6 \text{ min } l$; $Q(\varepsilon)=3656.6 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0 1982Ka09: p on natural Sb target (¹²¹Sb(p,4n)¹¹⁸Te); chem, iron-free β^- spectrometer; γ , $\gamma\gamma(\theta)$, ce. 1970Ha08: ¹¹⁸Sn(p,n) E=25 MeV; mass, chem; γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$. Other: 1964Ka10.

¹¹⁸Sn Levels

 ε, β^+ radiations

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J π ‡	E(level) [†]	J π ‡
0.0	0^{+}	2042.8 9	2+	2402.2 5	2+	2929.05 11	(2+)
1229.34 <i>3</i>	2+	2056.66 4	$0^{+\#}$	2496.57 6	0+ #	3136.55 21	0^+
1758.07 <i>3</i>	0+ #	2327.6 5	2^{+}	2677.3 6	2^{+}		

[†] From a least-squares fit to $E(\gamma' s)$.

[‡] From Adopted Levels unless otherwise noted.

[#] From $\gamma\gamma(\theta)$ (1970Ha08,1982Ka09).

E(decay)	E(level)	Iβ ⁺ †	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(520 3)	3136.55		0.045 12	5.52 12	0.045 12	εK=0.8499; εL=0.1192; εM+=0.03094
(728 3)	2929.05		0.078 16	5.59 9	0.078 16	εK=0.8536; εL=0.1163; εM+=0.03008
(979 3)	2677.3		0.035 10	6.20 13	0.035 10	εK=0.8560; εL=0.1145; εM+=0.02954
(1160 3)	2496.57		0.52 7	5.18 6	0.52 7	εK=0.8569; εL=0.1137; εM+=0.02930
(1254 3)	2402.2		0.047 8	6.30 8	0.047 8	εK=0.8570; εL=0.1133; εM+=0.02919
(1329 3)	2327.6	0.0001	0.09 3	6.07 15	0.09 3	av Eβ=145.5 14; εK=0.8563; εL=0.1130;
						€M+=0.02910
(1600 3)	2056.66	0.0075 11	0.39 6	5.59 7	0.40 6	av Eβ=263.4 13; εK=0.8424; εL=0.1104;
						ε M+=0.02841
(1614 3)	2042.8	0.00047 20	0.023 10	6.84 <i>19</i>	0.023 10	av E β =269.5 14; ε K=0.8410; ε L=0.1102;
						$\varepsilon M += 0.02836$
(1899 3)	1758.07	0.038 6	0.44 6	5.69 7	0.48 7	av E β =393.5 <i>14</i> ; ε K=0.7912; ε L=0.1032;
						ε M+=0.02653
(2427 3)	1229.34	0.24 3	0.58 8	5.79 6	0.82 11	av E β =627.6 14; ε K=0.6053 13; ε L=0.07852 17;
						ε M+=0.02017 5
(3657 3)	0.0	73.2 3	24.3 2	4.525 13	97.5 <i>3</i>	av E β =1188.6 14; ε K=0.2143 6; ε L=0.02761 8;
						$\epsilon M + = 0.00/084 \ I9$

[†] Absolute intensity per 100 decays.

$\gamma(^{118}\text{Sn})$

I γ normalization: From $\varepsilon + \beta^+$ (to g.s.) + Σ Ti(to g.s.) = $\frac{100}{I(\beta^+)}/(I(1229\gamma) + I(1267\gamma)) = 24.3$ (1964Ka10), and the adopted decay scheme.

 $\alpha(K)$ exp values are recalculated by assuming $\alpha(K)(1229.34\gamma E2)=0.00072$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α &	Comments
298.58 4		2056.66	0+	1758.07 0+	E0		$ce(L)(298.58\gamma)/ce(K)(1229.33\gamma)=0.42$ 9 (1982Ka09).
528.73 <i>3</i>	19.1 9	1758.07	0^+	1229.34 2+	E2	0.00638	K/L=7.26 T9 (19921mZZ). α =0.00638; α (K)=0.00542; α (L)=0.00072 α (K)exp=5.7×10 ⁻³ 5.
813.2 [‡] 10	0.6 [‡] 3	2042.8	2^{+}	1229.34 2+			
827.34 7	16.0 10	2056.66	0^{+}	1229.34 2+	E2	0.00201	α =0.00201; α (K)=0.00172; α (L)=0.00021 α (K)exp=1.7×10 ⁻³ 3.
1098.5 5	3.2 9	2327.6	2^{+}	1229.34 2+			
1172.9 [‡] 5	1.9 [‡] 2	2402.2	2^{+}	1229.34 2+			
1229.33 <i>3</i>	100	1229.34	2+	$0.0 0^+$	[E2]	0.00083	$\alpha = 0.00083; \alpha(K) = 0.00072$
1267.23 5	20.7 8	2496.57	0^+	1229.34 2+	E2	0.00078	$\alpha = 0.00078; \ \alpha(K) = 0.00067$ $\alpha(K) \exp = 5.9 \times 10^{-4} \ 2.3.$
1447 4 10	09 3	2677 3	2+	1229 34 2+			
1699.7 1	3.1.5	2929.05	(2^+)	$1229.34 2^+$			
1758.05 5		1758.07	0+	0.0 0+	E0		ce(K)(1758.05γ)/ce(K)(1229.33γ)=0.34 2 (1982Ka09).
							K/L=8.17 59 (1992ImZZ).
1907.2 2	1.8 4	3136.55	0^{+}	1229.34 2+			
2044 [‡] 2	$0.3^{\ddagger} 2$	2042.8	2^{+}	$0.0 0^+$			
2056.64 5		2056.66	0^+	$0.0 0^+$	E0		$ce(K)(2056.5\gamma)/ce(K)(1229.33\gamma)=0.41$ 4 (1982Ka09).
							K/L=8.31 69 (1992ImZZ).
2327.0 8	0.43 9	2327.6	2+	$0.0 0^+$			
2496.56 ^{ct}		2496.57	0^{+}	$0.0 0^+$	(E0)		$ce(K)(2496.56\gamma)/ce(K)(1229.33\gamma) < 0.023.$
2677.5 [‡] 6	0.57 2	2677.3	2^{+}	$0.0 0^+$			

$\gamma(^{118}\text{Sn})$ (continued)

[†] From 1982Ka09, values are deduced from conversion electron energies unless otherwise noted.

[‡] From 1970Ha08. [#] E2 assignments from $\alpha(K)$ exp and $\gamma\gamma(\theta)$, E0 assignments from nonobservation of G.

[@] For absolute intensity per 100 decays, multiply by 0.025 3.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

