¹¹⁶Cd(α,2nγ),(⁷Li,p4nγ) **1979Br07,1980Va13**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao	NDS 75,99 (1995)	1-Feb-1993

The level scheme is from 1980Va13.

¹¹⁶Cd(α ,2n γ) 1980Va13,1979Br07: E=17-33 MeV, E γ , I γ , $\gamma\gamma$ (t), σ (E γ , θ), E(ce), I(ce), linear pol, enriched target. 1973IsZQ: E=24 MeV, $\gamma(\theta, H, t)$ ¹¹⁶Cd(⁷Li,p4n γ) 1987Lu06: E=26-40 MeV; 97% enriched target; singles and off-beam γ 's spectra, $\gamma(t)$. Other: 1986Da05. This is a preliminary report for

1987Lu06

¹¹⁸Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	Comments		
0.0	0+				
1229.63 6	2+				
2042.79 [#] 21	2+				
2280.27 9	4+				
2321.17 19	5-	21.7 ns 2	T _{1/2} : from 1980Va13. Others: 22 ns (1969Ya05), 22 ns (1973IsZQ).		
2488.86 [#] 18	4+				
2574.87 20	7-	245 ns 40	g=0.0978 6 (1973IsZQ).		
			$T_{1/2}$: from 1980Va13. Others: 230 ns (1969Ya05), 217 ns (1973IsZQ).		
2733.8 9	4+				
2878.5 4	4,5-				
2999.38 [#] 18	6+				
3052.12 21	8+				
3108.0 <i>3</i>	10+	2.52 μs 6	$T_{1/2}$: from 1987Lu06. Others: 2.50 μ s 14 (1980Va13), 2.93 μ s (1973IsZQ), 2.65 μ s 10 (1986Da05).		
			g=0.2432 7 (1973IsZQ).		
3691.9 [#] 5	8+				
4495.3 [#] 6	(10^{+})				
5379.3? [#] 12	(12 ⁺)				

[†] From a least-squares fit to $E(\gamma' s)$.

[‡] Given by authors based on mult of γ 's and expected band structure.

[#] Positive parity quasi-rotational band on 0^+ (1758 level), but the level had not been confirmed in this experiment.

[@] From pulsed beam measurement.

$\gamma(^{118}\text{Sn})$

 α (K)exp normalized to α (K)(1229.6 γ E2)=0.00719 (1980Va13, 1979Br07).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_{f}^{π}	Mult. [@]	α &	Comments
41.0 [#] 4	14 [#] 5	2321.17	5-	2280.27	4+	E1	2.18	$\alpha(K)=1.85; \ \alpha(L)=0.263; \ \alpha(M)=0.0507$ $\alpha: 1980Va13 \text{ report } \alpha=2.9 \ 10 \text{ based on an intensity}$
55.9 2	0.4 [#] 2	3108.0	10+	3052.12	8+	E2	12.9	$\alpha(K)=6.81; \ \alpha(L)=4.89; \ \alpha(M)=1.00; \ \alpha(N+)=0.203$ E _{γ} : weighted average of 56.1 <i>3</i> (1980Va13) and 55.8 <i>2</i>

Continued on next page (footnotes at end of table)

¹¹⁶Cd(α ,2n γ),(⁷Li,p4n γ) **1979Br07,1980Va13** (continued)

$\gamma(^{118}\text{Sn})$ (continued) α**&** $I_{\gamma}^{\dagger\ddagger}$ E_{γ}^{\dagger} Mult.[@] E_i(level) \mathbf{J}_i^{π} J_f^{π} δ Comments \mathbf{E}_{f} (1987Lu06). α : 1980Va13 report α =17 6. 208.5 4 1.8 2 2488.86 4+ 2280.27 4+ -0.17 4 0.0762 7 $\alpha(K)=0.0659~5; \alpha(L)=0.0084$ M1+E2 *l*; α (M)=0.00163 *3*; α(N+..)=0.00037 1 $\alpha(K) \exp = 0.081 \ 20.$ δ : from adopted gammas. 253.70[#] 6 52**#** 3 2574.87 7-2321.17 5-E2 0.0620 $\alpha(K)=0.0516; \alpha(L)=0.0084;$ $\alpha(M) = 0.00166;$ α (N+..)=0.00036 $\alpha(K) \exp = 0.052 \ 6.$ 446.0 2 2.8 2 2488.86 4^{+} 2042.79 2+ E2 0.0103 $\alpha(K)=0.0088; \alpha(L)=0.00121;$ $\alpha(M) = 0.00024$ $\alpha(K) \exp = 0.010 \ 3.$ 477.25# 6 28[#] 2 3052.12 8+ 2574.87 7-E1 0.00266 $\alpha = 0.00266; \alpha(K) = 0.00232;$ $\alpha(L) = 0.00028$ $\alpha(K) \exp = 0.0021$ 7. 12 2 6^{+} [E2] 0.00704 510.5 1 2999.38 2488.86 4+ $\alpha = 0.00704; \alpha(K) = 0.00597;$ $\alpha(L) = 0.00080$ E_{γ} : deduced from ce line. I_{γ} : calculated from Ice assuming mult=E2. 598.2[#] 4 6.9[#] 10 2878.5 $4,5^{-}$ 2280.27 4+ α (K)exp=0.050 *1*. 692.5 4 9.2 3 3691.9 8^{+} 2999.38 6+ E2 0.00311 $\alpha = 0.00311; \alpha(K) = 0.00266;$ $\alpha(L) = 0.00034$ $\alpha(K) \exp = 0.0030 5.$ Mult.: stretched E2 from $\gamma(\theta)$. 6^{+} 2280.27 4+ 719.2 2 7.2 3 2999.38 E2 0.00283 $\alpha = 0.00283; \alpha(K) = 0.00242;$ $\alpha(L)=0.00031$ $\alpha(K) \exp = 0.0031 \ 6.$ Mult.: stretched E2 from $\gamma(\theta)$. 803.4 3 2.1 2 4495.3 (10^{+}) 3691.9 8+ (E2) 0.00215 α =0.00215; α (K)=0.00184; $\alpha(L) = 0.00023$ $\alpha(K) \exp = 0.005 \ 3.$ Mult.: stretched E2 from $\gamma(\theta).$ 813.1 3 $2.6\ 2$ 2042.79 2^{+} 1229.63 2+ M1+E2-2.34 16 0.00216 1 α =0.00216 *1*; α (K)=0.00185 *l*; α (L)=0.00023 α (K)exp=0.0028 12. δ : from adopted gammas. (12^{+}) 4495.3 (10+) 884 1 1.0 3 5379.3? I_{γ} : from coin spectrum. 1050.64 6 87 4 2280.27 4^{+} 1229.63 2+ E2 0.00116 $\alpha = 0.00116; \alpha(K) = 0.00100;$ $\alpha(L) = 0.00012$ α (K)exp=0.00100 13. 3.2[#] 3 1091.5[#] 2 2321.17 5-1229.63 2+ 1229.63 6 1229.63 2^{+} $0.0 \quad 0^+$ 0.00083 $\alpha = 0.00083; \alpha(K) = 0.00072$ 100 [E2] 1259.2 6 4^{+} 1.8 3 2488.86 1229.63 2+ E2 1504.2[#] 9 3.3[#] 4 4^{+} 2733.8 1229.63 2+ 2.2 3 2042.1 8 2042.79 2^{+} 0.0 0+

[†] From (α ,2n γ). Values are from 1979Br07 unless otherwise noted.

¹¹⁶Cd(α ,2n γ),(⁷Li,p4n γ) 1979Br07,1980Va13 (continued)

$\gamma(^{118}\text{Sn})$ (continued)

- [‡] Relative to I(1229.6γ)=^{100,} At24 MeV.
 [#] From 1980Va13.
 [@] From α(K)exp and γ(pol), except as noted.
 [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

