Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	ENSDF	07-Jan-2022							

 $Q(\beta^{-}) = -12580 SY; S(n) = 12810 SY; S(p) = 3000 SY; Q(\alpha) = 2460 SY 2021Wa16$ Estimated uncertainties (2021Wa16): 360 for $Q(\beta^{-})$, 320 for S(n), 210 for S(p), 200 for $Q(\alpha)$.

 $Q(\varepsilon)=6210\ 200,\ Q(\varepsilon p)=4700\ 200,\ S(2n)=23960\ 280,\ 3730\ 200\ (syst,\ 2021Wa16).$

1997Ja12 (also 1995Gu01): ¹¹⁸Ba nuclide produced and identified in 63 Cu(58 Ni,p2n) reaction at 4.3-4.9 MeV/nucleon. On-line mass separation at GSI facility. Measured β^+ -delayed x rays and γ rays.

2012WiZY, 2011Ad10: ⁴⁰Ca(⁷⁸Kr,X)¹¹⁸Ba^{*},E=5.5 MeV/nucleon. Measured fragments with Z=3-28 in singles and in coincidence with light charged particles emitted by binary decays of ¹¹⁸Ba compound nucleus using the 4π-INDRA array at GANIL. Deduced center-of-mass kinetic energy distribution of fragments, total kinetic energies (TKEs), and inclusive cross-section distributions of fragments with charge Z=3-28. Comparison with predictions of statistical model.

Theoretical calculations: 56 primary references (34 for structure and 22 for decay modes and half-lives) in the NSR database available at www.nndc.bnl.gov/nsr/.

¹¹⁸Ba Levels

Cross Reference (XREF) Flags

A 58Ni(64 Zn,2p2n γ)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments				
0	0^{+}	5.5 s 2	A	$\%\varepsilon + \%\beta^+ = 100; \%\varepsilon p = ?$				
				T _{1/2} : from decay curve for β ⁺ -gated x-rays followed over 12 s (1997Ja12, also 1995Gu01). Decay curve for β-gated γ rays of 40, 52, 76 and 85 keV gave consistent results (1997Ja12).				
194.0 [‡]	(2^{+})		Α					
554.0 [‡]	(4^{+})		Α					
1042.8	(6 ⁺)		Α					
1636.0 [‡]	(8 ⁺)		Α					
1658.2 [#]	(5 ⁻)		Α					
2012.4 [#]	(7 ⁻)		A					
2312.0	(10^{+})		Α					
2488.2 [#]	(9 ⁻)		Α					
3051.0	(12^{+})		Α					
3072.2 [#]	(11^{-})		Α					
3756.2#	(13 ⁻)		Α					
3836	(14^{+})		Α					
4531 [#]	(15^{-})		Α					
4660 [‡]	(16^{+})		Α					
5376 <mark>#</mark>	(17^{-})		A					
5532 [‡]	(18^{+})		A					
6446 [‡]	(20^{+})		Α					

[†] As proposed by 1998Sm01, based on band assignments and systematics of even-even nuclei. Strong arguments are lacking since no details of angular distributions/correlations measurements are available.

Adopted Levels, Gammas (continued)

¹¹⁸Ba Levels (continued)

[±] Band(A): g.s. band. Evidence of alignment at $\hbar\omega$ =0.41 MeV due to $\pi h_{11/2}^2$.

[#] Band(B): Band based on (5⁻). This band cannot be explained as a pure 2-quasiparticle rotational structure, there is possibility of octupole correlations indicated by strong inter-band transition (1998Sm01).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
194.0	(2^{+})	194	0 0+	3051.0	(12^{+})	739	2312.0 (10 ⁺)
554.0	(4^{+})	360	194.0 (2 ⁺)	3072.2	(11^{-})	584	2488.2 (9-)
1042.8	(6^{+})	489	554.0 (4 ⁺)	3756.2	(13^{-})	684	3072.2 (11 ⁻)
1636.0	(8^+)	593	1042.8 (6+)	3836	(14^{+})	785	3051.0 (12+)
1658.2	(5 ⁻)	1104	554.0 (4 ⁺)	4531	(15^{-})	775	3756.2 (13 ⁻)
2012.4	(7^{-})	354	1658.2 (5-)	4660	(16^{+})	824	3836 (14 ⁺)
		970	1042.8 (6 ⁺)	5376	(17^{-})	845	4531 (15 ⁻)
2312.0	(10^{+})	676	1636.0 (8+)	5532	(18^{+})	872	4660 (16 ⁺)
2488.2	(9 ⁻)	476	2012.4 (7 ⁻)	6446	(20^{+})	914	5532 (18 ⁺)
		852	1636.0 (8+)				

γ ⁽¹¹⁸Ba)</sup>

Adopted Levels, Gammas

Level Scheme

Adopted Levels, Gammas

¹¹⁸₅₆Ba₆₂