Adopted Levels, Gammas

History							
Type Author		Citation	Literature Cutoff Date				
Full Evaluation	K. Kitao	NDS 75,99 (1995)	1-Feb-1993				

 $Q(\beta^{-})=7148\ 21;\ S(n)=5443\ 14;\ S(p)=10418\ 8;\ Q(\alpha)=-6.27\times10^{3}\ 8$ 2012Wa38 Note: Current evaluation has used the following Q record 7.06E3 105.47E3 1110400 syst-6500 syst 1993Au05.

¹¹⁸Ag Levels

Cross Reference (XREF) Flags

A

 118 Pd β^- decay 118 Ag IT decay (2.0 s) В

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments			
0.0	1(-)	3.76 s 15	AB	$\%\beta^{-}=100$			
				J^{n} : log ft=6.0-7.0 to 0 ⁺ and 2 ⁺ ; (E1) 379 γ -(M1) 49.8 γ - M1 45.8 γ cascade			
				T _{1/2} : from 1979HiZR. Others: $\approx 5 \text{ s}$ (1967Fr16), 5.3 s 9 (1968We10), 5.6 s 2			
				(1969We11), 3.7 s 2 (1971Fo22), 4.00 s 4 (1974Gr29).			
45.79 9	$0^{(-)}$ to $2^{(-)}$	$\approx 0.1 \ \mu s$	Α	J^{π} : (M1) γ from π =- level.			
				$T_{1/2}$: from 1989Ko22.			
95.61 <i>15</i>	$(0^{-}, 1^{-}, 2^{-})$		Α	J^{π} : (E1) γ from 1 ⁺ .			
125.43 15	$(0^{-}, 1^{-}, 2^{-})$		Α	J^{π} : (E1) γ from 1 ⁺ .			
127.63 10	$4^{(+)}$	2.0 s 2	AB	$\%\beta^{-}=59; \%$ IT=41			
				%IT: From 118 Ag IT decay (2.0 s).			
				J^{π} : E3 γ to $1^{(-)}$.			
				T _{1/2} : from 1979HiZR. Others: 1.9 s 2 (1989Ko22), 2.8 s 3 (1971Fo22).			
153.98 20			Α	-,_			
250.90 12	$0^+, 1^+, 2^+$		Α	J^{π} : M1 γ from 1 ⁺ .			
279.37 20	$(2^+, 3^+)$	≈0.1 µs	Α	J^{π} : M1 γ from $(0^+, 1^+, 2^+)$; γ to $(4)^+$.			
				T _{1/2} : from 1989Ko22.			
330.30? 25			Α	,			
370.8? <i>3</i>	$(0^+, 1^+, 2^+)$		Α	J^{π} : (M1) γ from 1 ⁺ .			
396.45 18	1+		Α	J^{π} : log ft=4.63 from 0 ⁺ .			
475.08 16	1+		Α	J^{π} : log ft=4.28 from 0 ⁺ .			
563.24 23	$(0^+, 1^+, 2^+)$		Α	J^{π} : (M1) γ from 1 ⁺ .			
641.82 24	1+		Α	J^{π} : log ft=4.77 from 0 ⁺ .			
720.42 24	1+		Α	J^{π} : log <i>ft</i> =4.60 from 0 ⁺ .			

[†] From ¹¹⁸Pd β^- decay.

	$\gamma^{(118}Ag)$							
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^π	Mult. [†]	α [‡]	Comments
45.79	$0^{(-)}$ to $2^{(-)}$	45.8 1	100	0.0	1 ⁽⁻⁾	M1	4.02	α (K)=3.47; α (L)=0.436; α (M)=0.0827 B(M1)(W.u.) \approx 0.0005
95.61	$(0^{-}, 1^{-}, 2^{-})$	49.8 2	100	45.79	$0^{(-)}$ to $2^{(-)}$	(M1)	3.15	$\alpha(K)=2.72; \ \alpha(L)=0.340; \ \alpha(M)=0.0647$
125.43	$(0^{-}, 1^{-}, 2^{-})$	29.8 2	3.1 6	95.61	$(0^{-}, 1^{-}, 2^{-})$	[M1]	14.2	$\alpha(K)=12.3; \ \alpha(L)=1.55; \ \alpha(M)=0.294$
		125.4 [#] 2	100 [#] 6	0.0	1 ⁽⁻⁾	[M1]	0.224	α (K)=0.195; α (L)=0.0240; α (M)=0.00456; α (N+)=0.00092
127.63	4 ⁽⁺⁾	127.6 <i>1</i>	100	0.0	1(-)	E3	4.69	$\alpha(K)=2.80; \ \alpha(L)=1.53; \ \alpha(M)=0.307;$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{118}\text{Ag})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^{π}	Mult. [†]	α^{\ddagger}	Comments
					<u>,</u>			α(N+)=0.0553 B(E3)(W.u.)=0.101 11
153.98		28.4 [@]		125.43	$(0^{-}, 1^{-}, 2^{-})$			
		108.0 <i>3</i>		45.79	$0^{(-)}$ to $2^{(-)}$			
250.90	$0^+, 1^+, 2^+$	96.8 <i>3</i>	≈ 2	153.98				
		125.4 [#] 3	100 [#] 4	125.43	(0^-,1^-,2^-)	[E1]	0.084	α (K)=0.0731; α (L)=0.0088; α (M)=0.00165; α (N+)=0.00032
		205.2 2	7.8 20	45.79	$0^{(-)}$ to $2^{(-)}$			
		$251.0^{@}$ 2	≈8.2	0.0	1(-)			
279.37	$(2^+, 3^+)$	151.6.2	100	127.63	4(+)			
330.30?	(_ ,0)	51.0 2	100	279.37	$(2^+,3^+)$			
370.8?	$(0^+, 1^+, 2^+)$	91.4 2	100	279.37	$(2^+,3^+)$	(M1)	0.545	α (K)=0.473; α (L)=0.0587; α (M)=0.0111; α (N+)=0.00223
396.45	1 ⁺	145.6 2	100 6	250.90	$0^+, 1^+, 2^+$	M1	0.148	α (K)=0.129; α (L)=0.0158; α (M)=0.00301; α (N+)=0.00061
		271.0 [#] 3	37 [#] 4	125.43	(0^-,1^-,2^-)	(E1)	0.0096	$\alpha(K)=0.0084; \ \alpha(L)=0.00099; \ \alpha(M)=0.00019$
		300.8 2	29 6	95.61	$(0^{-}, 1^{-}, 2^{-})$			
475.08	1+	224.2 2	100 6	250.90	0+,1+,2+	M1	0.0466	α (K)=0.0406; α (L)=0.00492; α (M)=0.00093; α (N+)=0.00019
		321.0 3	15 <i>3</i>	153.98				
		349.6 2	42 5	125.43	$(0^{-}, 1^{-}, 2^{-})$			
		379.5 2	73 12	95.61	$(0^{-}, 1^{-}, 2^{-})$	(E1)	0.00397	$\alpha(K)=0.00348; \alpha(L)=0.00041$
		429.5 4	≈3.4	45.79	$0^{(-)}$ to $2^{(-)}$			
563.24	$(0^+, 1^+, 2^+)$	233.0 2	25 8	330.30?				
		283.7 2	100 10	279.37	$(2^+, 3^+)$	M1	0.0252	α (K)=0.0219; α (L)=0.00264; α (M)=0.00050; α (N+)=0.00010
641.82	1+	78.5 [#] 2	100 [#] 1	563.24	$(0^+, 1^+, 2^+)$	(M1)	0.84	α (K)=0.729; α (L)=0.091; α (M)=0.0172; α (N+)=0.00346
		271.0 [#] 3	65 [#] 7	370.8?	$(0^+, 1^+, 2^+)$	(M1)	0.0284	α (K)=0.0247; α (L)=0.00298; α (M)=0.00056; α (N+)=0.00011
720.42	1+	78.5 [#] 2	16 [#] 1	641.82	1+	(M1)	0.84	$\alpha(K)=0.729; \ \alpha(L)=0.091; \ \alpha(M)=0.0172; \ \alpha(N+)=0.00346$
		157.1 3	67 20	563.24	$(0^+, 1^+, 2^+)$	[M1]	0.121	$\alpha(\mathbf{K}) \exp[=0.8\ 2.$ $\alpha(\mathbf{K}) = 0.105; \ \alpha(\mathbf{L}) = 0.0128;$ $\alpha(\mathbf{M}) = 0.00244; \ \alpha(\mathbf{N}+) = 0.00049$
		469.6 4	100 10	250.90	$0^+, 1^+, 2^+$			E _γ : 468.8 5 (1989Ko22).
		595.7 5	51 20	125.43	$(0^{-}, 1^{-}, 2^{-})$			

[†] From ¹¹⁸Pd β^- decay.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed with intensity suitably divided.
[@] Placement of transition in the level scheme is uncertain.

 $^{118}_{\ 47} Ag_{71}$