¹¹⁷Cs β^+ decay (8.4 s) 1986Ma41

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jean Blachot	ENSDF	1-Mar-2009						

Parent: ¹¹⁷Cs: E=0; J^{π}=(9/2⁺); T_{1/2}=8.4 s *6*; Q(β ⁺)=7.69×10³ *6*; % β ⁺ decay=100.0 Produced from 600 MeV p on La, ms, (1986Ma41). Measured: γ , $\gamma\gamma$, ce, Ge(Li), Si(Li). The level scheme is mainly as given by 1986Ma41. α : Additional information 2. Additional information 1.

¹¹⁷Xe Levels

E(level)	$J^{\pi \ddagger}$	E(level)	$J^{\pi \ddagger}$	E(level)	E(level)
0.0	$(5/2)^+$	313.3 8	9/2-	615.0 2	882.0 3
204.8 1	$(7/2^+)$	364.7 2	(+)	637.4	978.4 <i>4</i>
205.6 1	$(7/2^{-})$	393.1 <i>1</i>	$(^{+})$	713.1 4	987.2 5
221.6 <i>1</i>	$(5/2^+)$	438.7 2	$(^{+})$	736.5 2	1052.0 <i>3</i>
229.8 8	$(11/2^{-})$	536.1 2	(+)	785.5 2	1069.1 4
242.7 1	$(5/2^{-})$	540.1 2	$(^{+})$	818.0 2	1508.5 5
263.1 <i>1</i>	$(9/2^+)$	579.6 2		825.1 5	
271.1 <i>I</i>	$(7/2^+)$	593.3 4		869.1 <i>3</i>	

[†] From Adopted Levels.

[‡] From γ mult and β^- decay syst of other odd Xe nuclides.

$\gamma(^{117}\text{Xe})$

I γ normalization: the absolute intensities are based on the 325 γ (75%) of the ¹¹⁷I decay.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α	Comments
^x 29.7 1 ^x 33.7 1	660 <i>70</i> 150 <i>30</i>							
83.8 1	59 6	313.3	9/2-	229.8	(11/2 ⁻)	M1	1.360	α (K)exp=1.3 2; α (L)exp=0.13 4 α (K)=1.167 17; α (L)=0.1545 23; α (M)=0.0314 5; α (N)=0.00649 10; α (O)=0.000809 12 α (N+)=0.00730 11 E _{γ} : from a 289.4 level in 1986Ma41, not adopted here.
^x 107.8 2	6 1					(M1,E2)	1.0 4	
121.9 <i>1</i>	21 2	393.1	(*)	271.1	(7/2+)	M1	0.469	α (K)exp=0.33 <i>10</i> α (K)=0.402 <i>6</i> ; α (L)=0.0530 <i>8</i> ; α (M)=0.01076 <i>16</i> ; α (N)=0.00223 <i>4</i> ; α (O)=0.000278 <i>4</i> α (N+)=0.00250 <i>4</i>
143.0 2	12 1	536.1	(*)	393.1	(*)	M1	0.300	$\begin{array}{l} \alpha(K) \exp = 0.25 \ 7 \\ \alpha(K) = 0.258 \ 4; \ \alpha(L) = 0.0338 \ 5; \ \alpha(M) = 0.00687 \ 10; \\ \alpha(N) = 0.001421 \ 21; \ \alpha(O) = 0.000178 \ 3 \\ \alpha(N+) = 0.001599 \ 24 \end{array}$
150.3 <i>3</i>	4 1	393.1	$(^{+})$	242.7	$(5/2^{-})$			
159.9 <i>1</i>	330 <i>30</i>	364.7	(*)	204.8	(7/2+)	M1	0.220	$\begin{array}{l} \alpha(\text{K}) \exp = 0.17 \ 4 \\ \alpha(\text{K}) = 0.189 \ 3; \ \alpha(\text{L}) = 0.0248 \ 4; \ \alpha(\text{M}) = 0.00503 \ 7; \\ \alpha(\text{N}) = 0.001041 \ 15; \ \alpha(\text{O}) = 0.0001301 \ 19 \\ \alpha(\text{N}+) = 0.001171 \ 17 \end{array}$

Continued on next page (footnotes at end of table)

¹¹⁷Cs β^+ decay (8.4 s) **1986Ma41** (continued)

$\gamma(^{117}$ Xe) (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α	Comments
171.5 2	24 3	393.1	(*)	221.6	(5/2 ⁺)	(M1,E2)	0.23 5	$\alpha(K) \exp = 0.18 \ 4$ $\alpha(K) = 0.18 \ 3; \ \alpha(L) = 0.035 \ 15; \ \alpha(M) = 0.007 \ 4;$ $\alpha(N) = 0.0015 \ 6; \ \alpha(O) = 0.00017 \ 6;$ $\alpha(N+ \to -0.0016 \ 7;$
188.2 <i>1</i>	150 <i>15</i>	393.1	(*)	204.8	(7/2+)	(M1,E2)	0.17 3	$\alpha(N+)=0.00107$ $\alpha(K)\exp=0.13 3$ $\alpha(K)=0.138 18; \ \alpha(L)=0.025 10; \ \alpha(M)=0.0052$ $20; \ \alpha(N)=0.0010 4; \ \alpha(O)=0.00012 4$ $\alpha(N+)=0.0012 5$
204.8 2	1000 80	204.8	(7/2+)	0.0	(5/2)+	M1	0.1121	$\alpha(K) \exp = 88.E - 3 \ 14; \ \alpha(L) \exp = 13.E - 3 \ 3 \\ \alpha(K) = 0.0965 \ 14; \ \alpha(L) = 0.01254 \ 18; \\ \alpha(M) = 0.00254 \ 4; \ \alpha(N) = 0.000527 \ 8; \\ \alpha(O) = 6.59 \times 10^{-5} \ 10 \\ \alpha(N) = 0.000502 \ 0 $
205.6 2	450 70	205.6	(7/2-)	0.0	(5/2)+	E1	0.0286	$\begin{array}{l} \alpha(N+)=0.000393 \ 9\\ \alpha(K)\exp=22.E-3 \ 10\\ \alpha(K)=0.0246 \ 4; \ \alpha(L)=0.00314 \ 5;\\ \alpha(M)=0.000633 \ 9; \ \alpha(N)=0.0001299 \ 19;\\ \alpha(O)=1.581\times10^{-5} \ 23\\ \alpha(N)=-0.0001457 \ 21 \end{array}$
217.0 <i>1</i>	22 2	438.7	(*)	221.6	(5/2+)	(M1,E2)	0.109 <i>13</i>	$\alpha(N+)=0.000145721$ $\alpha(K)\exp=70.E-3 30$ $\alpha(K)=0.090 8; \ \alpha(L)=0.015 5; \ \alpha(M)=0.0031$ $10; \ \alpha(N)=0.00064 19; \ \alpha(O)=7.4\times10^{-5} 18$ $\alpha(N+)=0.00071 21$
221.6 <i>1</i>	320 <i>30</i>	221.6	(5/2+)	0.0	(5/2)+	(M1,E2)	0.102 12	α (K)exp=80.E-3 20; α (L)exp=14.E-3 5 α (K)=0.085 7; α (L)=0.014 4; α (M)=0.0029 9; α (N)=0.00059 17; α (O)=6.9×10 ⁻⁵ 16 α (N+)=0.00066 19
233.9 <i>3</i> x235 9 3	24 <i>3</i> 20 2	438.7	(*)	204.8	$(7/2^+)$			
242.7 1	195 20	242.7	(5/2 ⁻)	0.0	(5/2)+	E1	0.0182	α (K)exp=13.E-3 5 α (K)=0.01573 22; α (L)=0.00199 3; α (M)=0.000402 6; α (N)=8.25×10 ⁻⁵ 12; α (O)=1.010×10 ⁻⁵ 15 α (N+)=9.26×10 ⁻⁵ 13
249.4 2 263.1 <i>1</i>	9 2 266 20	785.5 263.1	(9/2+)	536.1 0.0	(⁺) (5/2) ⁺	(E2)	0.0641	$\alpha(K) \exp = 52.E - 3 \ 12; \ \alpha(L) \exp = 5.E - 3 \ 3 \\ \alpha(K) = 0.0522 \ 8; \ \alpha(L) = 0.00946 \ 14; \\ \alpha(M) = 0.00196 \ 3; \ \alpha(N) = 0.000397 \ 6; \\ \alpha(O) = 4.50 \times 10^{-5} \ 7 \\ \alpha(N) = 0.000442 \ 7 $
268.8 2	30 <i>3</i>	540.1	(*)	271.1	(7/2+)	(M1,E2)	0.057 3	$\begin{array}{l} \alpha((N+1))=0.000442 \ 7 \\ \alpha(K) \exp = 80.E - 3 \ 40 \\ \alpha(K) = 0.0478 \ 12; \ \alpha(L) = 0.0074 \ 14; \\ \alpha(M) = 0.0015 \ 3; \ \alpha(N) = 0.00031 \ 6; \\ \alpha(O) = 3.7 \times 10^{-5} \ 5 \\ \alpha(N) = -0.00035 \ 7 \end{array}$
271.1 <i>I</i>	285 20	271.1	(7/2 ⁺)	0.0	(5/2)+	(M1,E2)	0.056 3	$\begin{array}{l} \alpha(\text{K}) \exp = 48.\text{E} - 3 \ 11; \ \alpha(\text{L}) \exp = 6 \ 3 \\ \alpha(\text{K}) = 0.0466 \ 11; \ \alpha(\text{L}) = 0.0072 \ 13; \\ \alpha(\text{M}) = 0.0015 \ 3; \ \alpha(\text{N}) = 0.00030 \ 6; \\ \alpha(\text{O}) = 3.6 \times 10^{-5} \ 5 \\ \alpha(\text{N}+) = 0.00034 \ 6 \end{array}$
277.1 3	20 <i>4</i> 16 3	540.1 593 3	(*)	263.1	$(9/2^+)$ $9/2^-$			
314.4 2	44 6	536.1	(+)	221.6	$(5/2^+)$			
331.4 2 336.9 <i>1</i>	21 <i>3</i> 75 <i>15</i>	536.1 579.6	(*)	204.8 242.7	$(7/2^+)$ $(5/2^-)$			
364.7 2	19 4	364.7	(+)	0.0	$(5/2)^+$			

Continued on next page (footnotes at end of table)

¹¹⁷Cs β^+ decay (8.4 s) 1986Ma41 (continued)

$\gamma(^{117}$ Xe) (continued)

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
374.1.2	17.3	579.6		205.6	$(7/2^{-})$	
x387.2 3	17.5					
393.2 2	140	393.1	$(^{+})$	0.0	$(5/2)^+$	
393.2 2	30	615.0		221.6	$(5/2^+)$	I_{α} ; from coincidence.
430.4 5	7 2	869.1		438.7	$(2)^{-}$	
431.8 3	31 5	637.4		205.6	$(7/2^{-})$	
438.8 2	190 20	438.7	$(^{+})$	0.0	$(5/2)^+$	
450.0 3	22 3	713.1		263.1	$(9/2^+)$	
465.1 3	11 2	736.5		271.1	$(7/2^+)$	
473.8 2	40 6	736.5		263.1	$(9/2^+)$	
522.5 <i>3</i>	20 3	785.5		263.1	$(9/2^+)$	
529.0 5	62	1069.1		540.1	(+)	
532.3 5	92	736.5		204.8	$(7/2^+)$	
540.1 2	32 6	540.1	$(^{+})$	0.0	$(5/2)^+$	
^x 543.0 3	40 4					
546.8 <i>4</i>	10 5	818.0		271.1	$(7/2^+)$	
555.0 4	52	818.0		263.1	$(9/2^+)$	
610.9 2	54 6	882.0		271.1	$(7/2^+)$	
615.1 2	50 8	615.0		0.0	$(5/2)^+$	
620.3 4	30 5	825.1		204.8	$(7/2^+)$	
^x 626.5 4	13 <i>3</i>					
647.5 <i>3</i>	38 5	869.1		221.6	$(5/2^+)$	
716.0 6	45 15	987.2		271.1	$(7/2^+)$	
773.6 <i>3</i>	43 5	978.4		204.8	$(7/2^+)$	
781.3 <i>3</i>	34 5	1052.0		271.1	$(7/2^+)$	
846.5 5	30 4	1052.0		205.6	$(7/2^{-})$	
869.0 5	45 5	869.1		0.0	$(5/2)^+$	
928.7 6	19 <i>3</i>	1508.5		579.6		
987.4 6	15 <i>3</i>	987.2		0.0	$(5/2)^+$	
1051.5 6	10 2	1052.0		0.0	$(5/2)^+$	
1069.1 6	72	1069.1		0.0	$(5/2)^+$	
^x 1084.6 4	50 6					
^x 1143.2 6	15 <i>3</i>					
^x 1201.8 6	12 2					
1266.0 6	17 <i>3</i>	1508.5		242.7	$(5/2^{-})$	
^x 1541.7 6	15 2					

[†] For absolute intensity per 100 decays, multiply by 0.015. ^{*x*} γ ray not placed in level scheme.

 \mathbf{t}

 $^{117}_{54}{
m Xe}_{63}$

₽-⁸⁹9X^{₹5}

₽-^{£9}əX^{₽5}