## <sup>117</sup>**I** $\beta^+$ decay **1985Le10**

| History         |              |          |                        |  |  |  |  |  |  |
|-----------------|--------------|----------|------------------------|--|--|--|--|--|--|
| Туре            | Author       | Citation | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | Jean Blachot | ENSDF    | 1-Mar-2009             |  |  |  |  |  |  |

Parent: <sup>117</sup>I: E=0;  $J^{\pi}=(5/2)^+$ ;  $T_{1/2}=2.22 \text{ min } 4$ ;  $Q(\beta^+)=4.66\times10^3 3$ ;  $\%\beta^+$  decay=100.0 <sup>117</sup>I produced from <sup>16</sup>O (86 MeV)+ <sup>104</sup>Pd, ms. <sup>12</sup>C (50-70MeV)+Ag (1985Le10). Others: 1969Ha03, 1969Se05, 1974Ha10, 1969La33.

 $\beta$ -strength function: see 1975Ko01, 1975Ho03.

## <sup>117</sup>Te Levels

| E(level)                                                                                                                                                   | $J^{\pi \ddagger}$                                                                    | T <sub>1/2</sub> | Comments                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|
| 0<br>274.4 2<br>296.0 5<br>325.9 3<br>577.8 5<br>681.4? <sup>†</sup> 5<br>935.7 5<br>958.4? <sup>†</sup> 5<br>964.4 5<br>1244.4 5<br>1299.3? 1<br>1577.3 5 | $\frac{1/2^+}{5/2^+}$<br>(3/2 <sup>+</sup> ,5/2 <sup>+</sup> )<br>(3/2 <sup>+</sup> ) | 62 min 2         | J <sup><math>\pi</math></sup> : suggested by the 296 $\gamma$ (1985Le10). |

<sup>†</sup> Based on deexciting transition to 274 level. This transition could feed 296 level instead, in which case E(level) would be larger by 21.6 keV. In the case of the 681 level, the level at this energy is established by data in other data sets.

 $\varepsilon, \beta^+$  radiations

<sup>‡</sup> From 1985Le10, but not adopted.

| E(decay)                 | E(level) | $I\beta^{+\dagger}$ | $I\varepsilon^{\dagger}$ | Log <i>ft</i> | $I(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                                                 |
|--------------------------|----------|---------------------|--------------------------|---------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|
| $(3.08 \times 10^3 3)$   | 1577.3   | 0.11 4              | 0.10 3                   | 6.64 15       | 0.21 7                               | av E $\beta$ =925 14; $\varepsilon$ K=0.393 10; $\varepsilon$ L=0.0517 13;<br>$\varepsilon$ M+=0.0136 4  |
| $(3.70 \times 10^3 \ 3)$ | 964.4    | 0.46 11             | 0.18 4                   | 6.54 11       | 0.64 15                              | av Eβ=1207 14; εK=0.237 6; εL=0.0310 8;<br>εM+=0.00817 21                                                |
| $(3.70 \times 10^3 \ 3)$ | 958.4?   | 0.39 13             | 0.15 5                   | 6.61 15       | 0.54 18                              | av Eβ=1210 14; εK=0.236 6; εL=0.0308 8;<br>εM+=0.00813 21                                                |
| $(3.72 \times 10^3 \ 3)$ | 935.7    | 1.2 3               | 0.43 11                  | 6.15 11       | 1.6 4                                | av E $\beta$ =1220 14; $\varepsilon$ K=0.231 6; $\varepsilon$ L=0.0303 8;<br>$\varepsilon$ M+=0.00798 20 |
| $(4.33 \times 10^3 \ 3)$ | 325.9    | 70 5                | 14 <i>I</i>              | 4.78 4        | 84 <i>6</i>                          | av $E\beta$ =1505 14; $\varepsilon$ K=0.143 4; $\varepsilon$ L=0.0187 5;<br>$\varepsilon$ M+=0.00493 12  |
| $(4.36 \times 10^3 \ 3)$ | 296.0    | <8                  | <1                       | >5.8          | <9                                   | av E $\beta$ =1519 14; $\varepsilon$ K=0.140 4; $\varepsilon$ L=0.0183 5;<br>$\varepsilon$ M+=0.00482 11 |
| $(4.39 \times 10^3 \ 3)$ | 274.4    | <3                  | <0.6                     | >6.1          | <4                                   | av E $\beta$ =1529 14; $\varepsilon$ K=0.138 4; $\varepsilon$ L=0.0180 4;<br>$\varepsilon$ M+=0.00474 11 |

<sup>†</sup> Absolute intensity per 100 decays.

 $\gamma(^{117}\text{Te})$ 

I $\gamma$  normalization: from assumption of  $\Sigma$  Ti(g.s.)=100.

Ν

| Eγ                   | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$                    | Mult.   | α <sup>@</sup>       | $I_{(\gamma+ce)}^{\#}$ | Comments                                                                                                                                                                                                                                                                |
|----------------------|-------------------------|------------------------|----------------------|------------------|---------------------------------------|---------|----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.6 5               |                         | 296.0                  | (3/2+,5/2+)          | 274.4            | 5/2+                                  | (M1,E2) | 4.×10 <sup>2</sup> 4 | 75                     | ce(L)/( $\gamma$ +ce)=0.8 5; ce(M)/( $\gamma$ +ce)=0.17 22;<br>ce(N)/( $\gamma$ +ce)=0.03 5; ce(O)/( $\gamma$ +ce)=0.002 4;<br>Particle normalization/T <sub>1/2</sub> =0.03 5<br>Mult.: from level scheme.                                                             |
| 30.1 5               | 0.1 <i>1</i>            | 325.9                  | (3/2 <sup>+</sup> )  | 296.0            | (3/2 <sup>+</sup> ,5/2 <sup>+</sup> ) | (M1,E2) | 7.×10 <sup>1</sup> 7 |                        | $\alpha(L)=6.E1 6$ ; $\alpha(M)=12 12$ ; $\alpha(N)=2.3 22$ ; $\alpha(O)=0.18$<br>17; $\alpha(N+)=2.5 24$<br>Mult.: from level scheme.<br>$I_{(\gamma+ce)}$ : based on the intensity balance.                                                                           |
| x45.6 5<br>52.2 5    | 0.3 1                   | 325.9                  | (3/2 <sup>+</sup> )  | 274.4            | 5/2+                                  | [M1]    | 4.43 14              | 75                     | ce(K)/( $\gamma$ +ce)=0.702 <i>12</i> ; ce(L)/( $\gamma$ +ce)=0.092 <i>4</i> ;<br>ce(M)/( $\gamma$ +ce)=0.0184 <i>8</i> ; ce(N)/( $\gamma$ +ce)=0.00363 <i>15</i> ;<br>ce(O)/( $\gamma$ +ce)=0.000392 <i>16</i><br>Particle normalization/ $T_{1/2}$ =0.00402 <i>17</i> |
| <sup>x</sup> 112.3 6 | 0.5 2                   |                        |                      |                  |                                       |         |                      |                        | 1/2                                                                                                                                                                                                                                                                     |
| <sup>x</sup> 122.2 5 | 0.3 1                   |                        |                      |                  |                                       |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 274.4 2              | 27.2 14                 | 274.4                  | 5/2+                 | 0                | 1/2+                                  | E2      | 0.0516               |                        | $\alpha(K)=0.0427 \ 6; \ \alpha(L)=0.00715 \ 11; \ \alpha(M)=0.001453$<br>21; \ \alpha(N)=0.000280 \ 4; \ \alpha(O)=2.74×10^{-5} \ 4<br>\ \alpha(N+)=0.000308 \ 5                                                                                                       |
| 296.0 5              | $0.5^{\dagger} 5$       | 296.0                  | $(3/2^+, 5/2^+)$     | 0                | $1/2^{+}$                             |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 303.4 5              | 1.5 <i>1</i>            | 577.8                  |                      | 274.4            | 5/2+                                  |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 325.8 2              | 100                     | 325.9                  | (3/2 <sup>+</sup> )  | 0                | 1/2+                                  | (M1,E2) | 0.0286 11            |                        | $\alpha$ (K)exp=0.025 3; $\alpha$ (L)exp=0.004 1 (1986Ma41)<br>$\alpha$ (K)=0.0243 6; $\alpha$ (L)=0.0034 5; $\alpha$ (M)=0.00069 10;<br>$\alpha$ (N)=0.000136 18; $\alpha$ (O)=1.41×10 <sup>-5</sup> 12<br>$\alpha$ (N+)=0.000150 19                                   |
| 340.9 5              | 0.6 1                   | 1299.3?                |                      | 958.4?           |                                       |         |                      |                        |                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 353.0 5 | 0.6 1                   |                        |                      |                  |                                       |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 407.0 5              | 1.1 1                   | 681.4?                 |                      | 274.4            | 5/2+                                  |         |                      |                        |                                                                                                                                                                                                                                                                         |
| ×4/5.9 5             | 0.6 I                   |                        |                      |                  |                                       |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 609.8.5              | 0.71<br>0.63            | 935 7                  |                      | 325.0            | $(3/2^+)$                             |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 638.9.5              | 3.3 2                   | 964.4                  |                      | 325.9            | $(3/2^+)$                             |         |                      |                        |                                                                                                                                                                                                                                                                         |
| x655.4 5             | 0.5 1                   | 20                     |                      |                  | (-/- )                                |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 661.5 5              | 6.8 20                  | 935.7                  |                      | 274.4            | 5/2+                                  |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 684.0 5              | 4.3 <i>3</i>            | 958.4?                 |                      | 274.4            | 5/2+                                  |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 689.7 5              | 0.8 1                   | 964.4                  |                      | 274.4            | 5/2+                                  |         |                      |                        |                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 695.8 5 | 1.7 1                   |                        |                      |                  |                                       |         |                      |                        |                                                                                                                                                                                                                                                                         |
| ^858.8 5<br>035 5 5  | 1.3 1                   | 035 7                  |                      | 0                | 1/2+                                  |         |                      |                        |                                                                                                                                                                                                                                                                         |
| 955.5 5              | 0.0 1                   | 955.1                  |                      | U                | 1/2                                   |         |                      |                        |                                                                                                                                                                                                                                                                         |

| Eγ                                                    | $I_{\gamma}^{\ddagger}$                                      | E <sub>i</sub> (level)    | $\mathbf{J}_i^{\pi}$ | $E_f$               | ${ m J}_f^{\pi}$ | $E_{\gamma}$                                               | Ι <sub>γ</sub> ‡                             | E <sub>i</sub> (level) | $E_f$ | $\mathbf{J}_{f}^{\pi}$ |
|-------------------------------------------------------|--------------------------------------------------------------|---------------------------|----------------------|---------------------|------------------|------------------------------------------------------------|----------------------------------------------|------------------------|-------|------------------------|
| 948.6 5<br>964.4 5<br>969.9 5<br><sup>x</sup> 989.7 5 | 0.4 <i>1</i><br>0.9 <i>1</i><br>0.7 <i>1</i><br>0.6 <i>1</i> | 1244.4<br>964.4<br>1244.4 |                      | 296.0<br>0<br>274.4 |                  | <sup>x</sup> 1084.5 5<br><sup>x</sup> 1232.4 5<br>1302.9 5 | 0.8 <i>1</i><br>0.4 <i>1</i><br>1.7 <i>1</i> | 1577.3                 | 274.4 | 5/2+                   |

<sup>†</sup> From coin data (1985Le10).
<sup>‡</sup> For absolute intensity per 100 decays, multiply by 0.75 *1*.
<sup>#</sup> Absolute intensity per 100 decays.
<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$  ray not placed in level scheme.



