Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 20-Jul-2015

 $Q(\beta^{-})=11140 \text{ SY}; S(n)=5000 \text{ SY}; S(p)=14170 \text{ SY}; Q(\alpha)=-10300 \text{ SY}$ 2012Wa38

Estimated uncertainties: $\Delta Q(\beta^-)=710$, $\Delta S(n)=500$, $\Delta S(p)=640$, $\Delta Q(\alpha)=570$ (2012Wa38).

 $Q(\beta^- n) = 7620 \ 400$, $S(2n) = 8620 \ 450$, $S(2p) = 31610 \ 640$ (syst, 2012Wa38).

1997Be70 (also 1995CzZZ report): ¹¹⁷Tc produced in Be(²³⁸U,F), E=750 MeV/nucleon reaction and identification by time-of-flight at GSI. A total of three events were observed.

2008Be33: 117 Tc produced in 9 Be(136 Xe,X),E=1 GeV/nucleon, measured production σ at GSI.

2011Ni01: 117 Tc nuclide produced in Be(238 U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of 117 Tc made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of 117 Tc isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.

2015Lo04: ¹¹⁷Tc nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10¹⁰ ions/s. Identification of ¹¹⁷Tc was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹¹⁷Tc isotope was measured from the correlated ion-β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

2013Fa05: theoretical calculation of $T_{1/2}$ and $\%\beta^-n$.

¹¹⁷Tc Levels

E(level) $T_{1/2}$ Comments

44.5 ms 30 $\%\beta^-=100; \%\beta^-=?; \%\beta^-=?$ Theoretical $T_{1/2}=39.9$ ms, $\%\beta^-=25.2, \%\beta^-=20.0$ (2003Mo09).

E(level): measured half-life is assumed to correspond to the ground state of 117 Tc. $J^{\pi}: 3/2^-$ from systematic trend (2012Au07), $5/2^+$ in theoretical consideration (1997Mo25). $T_{1/2}$: measured by 2015Lo04 from (implanted ions)β correlated curves in time and position using maximum likelihood method. Other: 89 ms +95-30 (2011Ni01, from the analysis of the (ion)β-correlated decay curve). See 2015Lo04 for comparison of their experimental value with theoretical values.