¹¹⁷Xe β^+ decay **1986Ma41**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	ENSDF	1-Mar-2009					

Parent: ¹¹⁷Xe: E=0; $J^{\pi}=5/2^{(+)}$; $T_{1/2}=61$ s 2; $Q(\beta^+)=6.25\times10^3$ 3; $\%\beta^+$ decay=100.0

¹¹⁷Xe-Q(β⁺): Q≥6.27 MeV *30* (1985Le10),≥6.02 MeV *16* (1970BeZZ).

Activity: 600-MeV protons on lanthanum. ¹¹⁷Xe obtained by decay of ¹¹⁷Cs mass separated sources (1986Ma41).

Measured: γ , $\gamma\gamma$ (1986Ma41,1985Le10), ce (1986Ma41). The level scheme is as proposed by 1986Ma41. It includes all the levels observed by 1985Le10 for the ¹¹⁷Xe decay from 86-MeV ¹⁶O on ¹⁰⁴Pd. Others: 1976KeZO, 1974Ha10, 1969Ha03. See ¹¹⁷Xe Adopted Levels for (β +)-delayed proton branching.

 α : Additional information 1.

¹¹⁷I Levels

E(level)	J ^π ‡	E(level)	Jπ‡	E(level)	J π ‡	E(level)
0	$(5/2)^+$	221.3	$(3/2)^+$	567.4		1084.2
58.8	$(7/2)^+$	315.8 [†]	$(5/2)^+$	660.5 [†]	+	1130.0
116.7	$(1/2)^+$	353.6 [†]	$(9/2)^+$	661.3		1877.1
160.6	$(3/2)^+$	519.1 [†]	$(7/2^+)$	1050.0		

[†] Seen also by 1985Le10.

[‡] From Adopted Levels, suggested by analogy between the ^{117, 119, 121}Ivel schemes fed by corresponding Xe β decays and multipolarities 1986Ma41.

 $\gamma(^{117}I)$

I γ normalization: the absolute intensities are based on the 325.9 keV γ -ray (75%) of the ¹¹⁷I decay 1986Ma41.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α	Comments
$x^{28.5 1}$ $x^{32.3 1}$ 43.7 2	3.70×10 ³ 40 760 80 25 3	160.6	(3/2)+	116.7 (1/2)+	M1	8.19.16	α (L)exp=2.0.12
10.7 2	20.0	100.0	(3/2)	110.7 (1/2)		0.19 10	$\alpha(L)=0.0312; \alpha(L)=0.93319; \alpha(M)=0.188$ $4; \alpha(N)=0.03808; \alpha(O)=0.004439$ $\alpha(N+)=0.04249$
58.8 1	310 40	58.8	(7/2)+	0 (5/2)+	M1+E2	85	$\begin{array}{l} \alpha(L)\exp=0.9 \ 2; \ \alpha(M)\exp=0.15 \ 5\\ \alpha(K)=4.3 \ 13; \ \alpha(L)=2.7 \ 23; \ \alpha(M)=0.6 \ 5;\\ \alpha(N)=0.11 \ 10; \ \alpha(O)=0.010 \ 8;\\ \alpha(N+)=0.12 \ 11 \end{array}$
94.4 <i>1</i>	140 <i>10</i>	315.8	(5/2)+	221.3 (3/2)+	M1	0.881	α (K)exp=0.6 2; α (L)exp=0.14 5 α (K)=0.757 11; α (L)=0.0992 15; α (M)=0.0200 3; α (N)=0.00405 6; α (O)=0.000473 7 α (N+)=0.00452 7
101.6 2	17 6	160.6	(3/2)+	58.8 (7/2)+	(E2)	1.66 <i>3</i>	$\begin{array}{l} \alpha(\text{K}) \exp = 0.9 \ 3 \\ \alpha(\text{K}) = 1.137 \ 18; \ \alpha(\text{L}) = 0.415 \ 7; \ \alpha(\text{M}) = 0.0877 \\ 15; \ \alpha(\text{N}) = 0.0169 \ 3; \ \alpha(\text{O}) = 0.00158 \ 3 \\ \alpha(\text{N}+) = 0.0185 \ 3 \end{array}$
104.6 2	44 6	221.3	(3/2)+	116.7 (1/2)+	M1	0.658	$\begin{array}{l} \alpha(\text{K}) \exp = 0.5 \ 3 \\ \alpha(\text{K}) = 0.566 \ 9; \ \alpha(\text{L}) = 0.0740 \ 12; \\ \alpha(\text{M}) = 0.01492 \ 23; \ \alpha(\text{N}) = 0.00302 \ 5; \\ \alpha(\text{O}) = 0.000353 \ 6 \\ \alpha(\text{N}+) = 0.00337 \ 5 \end{array}$

Continued on next page (footnotes at end of table)

^x695.1 2

140 20

¹¹⁷ Xe	β^+ decay	1986Ma41	(continued)

$\gamma(^{117}I)$ (continued) I_{γ}^{\dagger} E_{γ} E_i(level) Mult. Comments α 116.7 1 540 50 116.7 E2 1.016 $(1/2)^{+}$ 0 $(5/2)^{-1}$ $\alpha(K)\exp=0.7 1; \alpha(L)\exp=0.19 4;$ α (M)exp=0.04 *l* $\alpha(K)=0.730$ 11; $\alpha(L)=0.228$ 4; $\alpha(M)=0.0479$ 7; α(N)=0.00928 14; α(O)=0.000884 13 α(N+..)=0.01016 15 155.2 1 130 15 315.8 $(5/2)^+$ 160.6 (3/2)+ M1 0.218 $\alpha(K) \exp = 0.14 6$ $\alpha(K)=0.188 3; \alpha(L)=0.0244 4; \alpha(M)=0.00491$ 7; α (N)=0.000994 14; α (O)=0.0001165 17 α (N+..)=0.001111 16 160.6 1 320 30 160.6 $(3/2)^+$ 0 $(5/2)^+$ M1 0.199 $\alpha(K) \exp = 0.15 \ 3; \ \alpha(L) \exp = 0.03 \ 1$ $\alpha(K)=0.1710\ 25;\ \alpha(L)=0.0222\ 4;$ α (M)=0.00447 7; α (N)=0.000904 13; $\alpha(O)=0.0001059\ 15$ α(N+..)=0.001010 15 40 4 315.8 0.1577 $\alpha(K) \exp = 0.09 4$ 199.1 2 $(5/2)^+$ 116.7 (1/2)+ (E2) $\alpha(K)=0.1258\ 18;\ \alpha(L)=0.0255\ 4;$ $\alpha(M)=0.00528 8; \alpha(N)=0.001036 15;$ $\alpha(O)=0.0001060 \ 16$ α(N+..)=0.001142 17 203.4 2 57 6 519.1 $(7/2^+)$ 315.8 (5/2)+ $(3/2)^+$ 0.0833 $\alpha(K) \exp = 0.06\ 2;\ \alpha(L) \exp = 0.012\ 4$ 221.3 1 1000 80 221.3 0 $(5/2)^+$ M1 $\alpha(K)=0.0718 \ 10; \ \alpha(L)=0.00922 \ 13;$ α (M)=0.00186 3; α (N)=0.000376 6; $\alpha(O)=4.41\times10^{-5}$ 7 α (N+..)=0.000420 6 256.9 1 125 15 315.8 $(5/2)^+$ 58.8 (7/2)+ (M1,E2) 0.061 6 α (K)exp=0.05 2 α(K)=0.051 4; α(L)=0.0079 18; α(M)=0.0016 4; $\alpha(N)=0.00032$ 8; $\alpha(O)=3.6\times10^{-5}$ 6 α (N+..)=0.00036 8 $(9/2)^+$ 294.7 1 530 40 353.6 58.8 $(7/2)^+$ (M1,E2) 0.0408 19 α (K)exp=0.032 8; α (L)exp=0.008 4 $\alpha(K)=0.0345 9; \alpha(L)=0.0051 8;$ $\alpha(M)=0.00104 \ 18; \ \alpha(N)=0.00021 \ 4;$ $\alpha(O)=2.3\times10^{-5}$ 3 α (N+..)=0.00023 4 x300.2 3 24 6 165 15 $(5/2)^+$ 315.8 *I* 315.8 $(5/2)^+$ 0 (M1,E2) 0.0334 9 $\alpha(K) \exp = 0.03 l$ $\alpha(K)=0.0283 4; \alpha(L)=0.0041 6;$ α (M)=0.00083 12; α (N)=0.000167 21; $\alpha(O)=1.87\times10^{-5}$ 16 $\alpha(N+..)=0.000185\ 23$ $(9/2)^+$ 0 353.6 2 78 8 353.6 $(5/2)^+$ 389.7 3 10 3 1050.0 660.5 + 439.2 2 230 20 221.3 (3/2)+ (M1,E2) 0.0133 9 $\alpha(K) \exp = 0.010 \ 4$ 660.5 $\alpha(K)=0.0114$ 9; $\alpha(L)=0.001539$ 22; α (M)=0.000311 5; α (N)=6.25×10⁻⁵ 9; $\alpha(O)=7.16\times10^{-6}\ 23$ α (N+..)=6.97×10⁻⁵ 10 450.7 2 70 10 567.4 116.7 (1/2)+ x460.0 3 15 5 $\alpha(K) \exp = 0.005 \ 3$ 519.1 2 620 70 519.1 $(7/2^+)$ 0 $(5/2)^+$ Mult.: could be M1. + 543.8 2 40 5 660.5 116.7 (1/2)+ 30 5 565.1 2 1084.2 519.1 $(7/2^+)$ x639.0 2 310 20 280 20 $(5/2)^+$ 661.3 2 661.3 0

Continued on next page (footnotes at end of table)

¹¹⁷Xe β^+ decay 1986Ma41 (continued)

$\gamma(^{117}I)$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
733.8 3	25 5	1050.0	_	315.8	$(5/2)^+$	^x 1213.0 5	40 5			
^x 757.3 3	100 10					^x 1247.5 5	60 7			
776.4 <i>3</i>	80 10	1130.0		353.6	$(9/2)^+$	x1317.0 5	15 5			
^x 875.6 5	65 7					^x 1432.8 5	33 5			
^x 970.1 5	55 6					^x 1481.8 5	75 10			
^x 1012.5 5	45 5					1523.6 5	200 20	1877.1	353.6	$(9/2)^+$
^x 1048.5 5	55 5					1561.2 5	44 6	1877.1	315.8	$(5/2)^+$
1084.3 5	73 12	1084.2		0	$(5/2)^+$					

[†] For absolute intensity per 100 decays, multiply by 0.01. ^{*x*} γ ray not placed in level scheme.

¹¹⁷Xe β⁺ decay 1986Ma41

