¹¹⁶Cs β^+ decay (3.85 s) 1980Ma16

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009			

Parent: ¹¹⁶Cs: E=100 SY; $J^{\pi}=4^+,5,6$; $T_{1/2}=3.85$ s 13; $Q(\beta^+)=10979.0$ SY; $\%\beta^+$ decay=100.0

The level scheme is as proposed by 1980Ma16.

Produced from La(³He,X), on-line mass separation.

Measured: γ (semi), $\gamma\gamma$ (semi), $\beta\gamma$.

Other measurements: 1976BaXV, 1978Da07. See ¹¹⁶Cs Adopted Levels for (β^+)-delayed proton and α branching.

¹¹⁶Xe Levels

E(level)	J^{π}	T _{1/2}	E(level)	J^{π}	E(level)	J^{π}	E(level)
0.	0^{+}	56 s 2	1474.2 [#]	(3^{+})	2085.5#	(5^{+})	2605.6
393.5 [†]	2^{+}		1532.9	6+	2117.2 [#]	(6 ⁺)	2991.7
917.8 [†]	4+		1557.0 [#]	(4^{+})	2210.3	(8 ⁺)	
1015.8 [‡]	(2^{+})		1838.8 [‡]	(4^{+})	2444.1 [#]		
1321.5 [#]	(2 ⁺)		1979.3 [#]		2498.4 [‡]	(6 ⁺)	

[†] Band(A): g.s. band.

[±] Band(B): β^{-} band, not seen in ⁵⁸Ni(⁶⁴Zn,2p $\alpha\gamma$).

[#] Band(C): γ -band.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^{+\dagger}$	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(8087 SY)	2991.7	3.8 6	0.118 19	5.97 7	3.9 6	av E β = 3086.71; ε K= 0.02596; ε L=0.003426
(8473 <i>SY</i>)	2605.6	1.7 4	0.044 11	6.35 11	1.7 4	av E β = 3273.82; ε K=0.022115; ε L=0.002918
(8580 SY)	2498.4	2.4 5	0.062 13	6.21 9	2.5 5	av E β = 3325.85; ε K=0.021184; ε L=0.002795
(8634 <i>SY</i>)	2444.1	3.5 5	0.087 13	6.07 7	3.6 5	av E β = 3352.22; ε K=0.020733; ε L=0.002735
(8868 SY)	2210.3	3.5 5	0.080 11	6.13 7	3.6 5	av E β = 3465.83; ε K=0.018928
(8961 SY)	2117.2	6.8 7	0.147 15	5.97 <i>5</i>	6.9 7	av E β = 3511.10; ε K=0.018267
(8993 SY)	2085.5	4.1 7	0.089 15	6.10 8	4.2 7	av E β = 3526.53; ε K=0.018049
(9099 SY)	1979.3	7.0 7	0.144 15	5.90 <i>5</i>	7.1 7	av E β = 3578.21; ε K=0.017344
(9240 SY)	1838.8	3.8 8		6.21 10	3.8 8	av E β = 3646.63
(9522 SY)	1557.0	6.0 22		6.08 16	6.0 22	av E β = 3784.00
(9546 SY)	1532.9	17.3 22	0.30 4	5.9 <i>3</i>	17.6 22	av $E\beta = 3795.76$; $\varepsilon K = 0.014750$
(9604 SY)	1474.2	5.7 10		6.12 8	5.7 10	av E β = 3824.40
(10063 SY)	1015.8	5.1 <i>13</i>		6.28 12	5.1 13	av $E\beta = 4048.31$
(10161 <i>SY</i>)	917.8	29.6		5.55 10	29.6	av E β = 4096.24

[†] Absolute intensity per 100 decays.

 $\gamma(^{116}\text{Xe})$

I γ normalization: from Σ (I(γ +ce) to g.s.+393.5, excluding 393.5 γ)=100.

116 Cs β^+	decay (3.85 s)	1980Ma16	(continued)
-----------------------	----------------	----------	-------------

							-			
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
x269.6 4	14 3				x823.0 8	4 2				
^x 322.2 4	40 5				874.9 6	16 <i>3</i>	2991.7		2117.2	(6^{+})
^x 345.9 4	13 <i>3</i>				^x 903.7 8	35 7				
x360.2 4	10 3				905.9 8	25 5	2991.7		2085.5	(5^{+})
393.5 2	1.0×10^{3} [†] 1	393.5	2+	$0. 0^+$	911.2 4	38 5	2444.1		1532.9	6+
458.3 <i>3</i>	30 4	1474.2	(3^{+})	$1015.8(2^+)$	921.4 6	93	1838.8	(4^{+})	917.8	4+
^x 465.4 3	12 3				927.9 8	42	1321.5	(2^+)	393.5	2^{+}
517.3 4	25 5	1838.8	(4^{+})	1321.5 (2 ⁺)	965.6 6	16 4	2498.4	(6^{+})	1532.9	6+
524.3 2	800 50	917.8	4+	393.5 2+	^x 969.4 6	63				
^x 528.5 4	20 5				^x 1008.5 6	63				
541.2 <i>3</i>	61 6	1557.0	(4^{+})	1015.8 (2 ⁺)	1015.8 4	35 4	1015.8	(2^{+})	0.	0^{+}
552.9 6	92	2085.5	(5^{+})	1532.9 6+	^x 1033.9 8	20 5				
556.6 4	15 2	1474.2	(3^{+})	917.8 4+	^x 1035.9 8	10 3				
560.2 <i>3</i>	73 6	2117.2	(6^{+})	1557.0 (4+)	^x 1044.9 6	11 3				
584.2 <i>4</i>	16 <i>3</i>	2117.2	(6^{+})	1532.9 6+	1061.5 4	75 7	1979.3		917.8	4+
611.3 <i>3</i>	60 5	2085.5	(5^{+})	1474.2 (3+)	1072.7 6	18 4	2605.6		1532.9	6+
615.1 <i>3</i>	320 20	1532.9	6^{+}	917.8 4+	1080.7 4	75 7	1474.2	(3^{+})	393.5	2^{+}
622.3 <i>3</i>	110 10	1015.8	(2^{+})	393.5 2+	^x 1164.3 8	16 4				
639.3 <i>3</i>	75 7	1557.0	(4^{+})	917.8 4+	x1168.0 8	30 5				
^x 656.3 6	72				^x 1247.0 8	20 4				
659.5 6	10 3	2498.4	(6^{+})	1838.8 (4+)	1321.5 8	20 4	1321.5	(2^{+})	0.	0^{+}
677.4 6	38 5	2210.3	(8^{+})	1532.9 6+	^x 1441.0 8	9 <i>3</i>				
^x 684.1 6	10 2				1446.0 8	16 4	1838.8	(4^{+})	393.5	2+
^x 706.6 6	10 2									

$\gamma(^{116}\text{Xe})$ (continued)

[†] I γ =1000 52 from intensity balance at 393.5 level. [‡] For absolute intensity per 100 decays, multiply by 0.094 5. ^x γ ray not placed in level scheme.

¹¹⁶Cs β^+ decay (3.85 s) 1980Ma16

¹¹⁶Cs β^+ decay (3.85 s) 1980Ma16

¹¹⁶₅₄Xe₆₂