Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	20-Jul-2015		

 $O(\beta^{-})=12610 SY; S(n)=3620 SY; S(p)=14000 SY; O(\alpha)=-9610 SY$ 2012Wa38

1997Be70 (also 1995CzZZ report): ¹¹⁶Tc produced by Be(²³⁸U,F), E=750 MeV/nucleon at GSI, identification by time-of-flight. 2008Be33: ¹¹⁶Tc produced in ⁹Be(136Xe,X),E=1 GeV/nucleon at GSI, measured production σ .

2011Ni01: ¹¹⁶Tc produced in Be(²³⁸U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of ¹¹⁶Tc made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of ¹¹⁶Tc isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.

2013So17: ¹¹⁶Tc isotope produced in ⁹Be(²³⁸U,X) reaction at 345 MeV/nucleon at RIBF-RIKEN facility. Fragments identified by Zero-degree spectrometer which analyzed events based on B ρ -tof- Δ E. Measured E γ , I γ , E β , (fragment) γ -coin, $\beta\gamma$ -coin, $\gamma\gamma$ -coin.

2015Lo04: ¹¹⁶Tc nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹¹⁶Tc was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹¹⁶Tc isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations. 2013Fa05: theoretical calculation of T_{1/2} and % β ⁻n.

¹¹⁶Tc Levels

E(level)	T _{1/2}	Comments
0	57 ms 3	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$
		Theoretical $T_{1/2}$ =44.0 ms, $\%\beta^{-}n$ =17.3, $\%\beta^{-}2n$ =0.07 (2003Mo09).
		E(level): it is assumed that the observed activity corresponds to the g.s. of ¹¹⁶ Tc.
		J^{π} : there may be two long-lived states according to 2013So17; a high-spin and low-spin with possible configuration= $\pi 5/2[422] \otimes v5/2[532]$ giving rise to $J^{\pi}=0^-$ or 5 ⁻ . 2012Au07 propose 2 ⁺ from systematics.
		$T_{1/2}$: measured by 2015Lo04 from (implanted ions) β correlated curves in time and position using maximum
		likelihood method. Other: 56 ms +15-10 (2011Ni01, from the analysis of the (ion) β -correlated decay
		curve). See 2015Lo04 for comparison of their experimental value with theoretical values.

Estimated uncertainties: $\Delta Q(\beta^{-})=300$, $\Delta S(n)=360$, $\Delta S(p)=500$, $\Delta Q(\alpha)=420$ (2012Wa38).

 $S(2n)=8830 \ 320, \ S(2p)=30650 \ 590, \ Q(\beta^{-}n)=6780 \ 310 \ (syst, \ 2012Wa38).$