¹⁰⁴**Ru**(¹⁸**O**, α **2n** γ) 1998Sa30

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009						

¹¹⁶Sn Levels

E=65 MeV. Taken from XUNDL.

Measured E γ , I γ , $\gamma\gamma$, I $\gamma\gamma(\theta)$ using DORIS array of 12 Compton-suppressed HPGe detectors.

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}
0.0 1293.77 <i>10</i>	0^+ 2^+	3227.96 20 3492.06 20	$\frac{8^{-}}{8^{+}}$	5388.0 [‡] 6 5495.91 23	12 ⁺ 13 ⁺	6344.08 <i>23</i> 6358.0 <i>6</i>	15^{-} (14 ⁺)
1756.9 [‡] 4	0^{+}	3522.49 22	9-	5522.19 23	13+	6659.52 25	16-
(2112.53 [‡] 12)	2+	3546.73 22	10^{+}	5573.6 5	(12+)	6663.1 6	(15 ⁺)
2266.24 13	3-	3711.8 [‡] 4	8+	5707.2 <i>3</i>		7082.15 25	17^{-}
2366.10 15	5-	4495.67 22	10-	5723.24 25	(12 ⁻)	7229.2 [‡] 6	16+
2391.08 13	4+	4505.2 [‡] 4	10^{+}	5823.68 23	14+	7457.3 6	(16+)
2529.43 [‡] 15 2773.43 17 2908.87 17 3032.23 [‡] 17	4+ 6- 7- 6+	4701.83 23 4878.63 23 4881.95 23 5161.27 23	11 ⁺ 11 ⁻ 12 ⁺ 12 ⁺	5929.3 <i>3</i> 5977.57 <i>23</i> 6098.30 <i>24</i> 6213.01 <i>23</i>	(13 ⁺) 13 ⁻ 14 ⁺ 14 ⁻	8227.9 [‡] 6 8585.6 3 8661.2 4 9141.4 4	18+
3210.6 4	7-	5329.90 24	12^{+}	6313.4 [‡] 6	14+	9321.9 [‡] <i>12</i>	(20^{+})

[†] From least-squares fit to $E\gamma's$. [‡] Band(A): 0⁺ intruder band, configuration= $\pi g_{9/2}^{-2} g_{7/2}^2$.

 $\gamma(^{116}\text{Sn})$

Angular distribution ratio: $R=I\gamma(at \text{ extreme angles})/I\gamma(at\approx90^\circ)$. R=1.5 for stretched quadrupole and $\Delta J=0$, dipole; ≈0.8 for $\Delta J=1$, dipole; and <0.8 for $\Delta J=1$, D+Q type.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
54 9	< 0.1	3546.73	10+	3492.06 8+	
99.9 <i>1</i>	2.9 2	2366.10	5-	2266.24 3-	R=0.94 12.
114.9 <i>1</i>	1.1 <i>I</i>	6213.01	14-	6098.30 14+	
131.1 <i>1</i>	15.6 5	6344.08	15-	6213.01 14-	R=0.79 7.
135.4 <i>1</i>	19.0 7	2908.87	7-	2773.43 6-	R=0.77 5.
138.2 4	1.4 2	2529.43	4+	2391.08 4+	
166.1 <i>1</i>	1.9 <i>1</i>	5495.91	13+	5329.90 12+	R=0.7 2.
235.4 1	9.3 <i>3</i>	6213.01	14-	5977.57 13-	R=0.81 5.
270.3 2	0.5 9	5977.57	13-	5707.2	
294.5 1	28.8 10	3522.49	9-	3227.96 8-	R=0.88 2.
301.5 1	15.2 6	5823.68	14^{+}	5522.19 13+	R=0.80 8.
305.1 <i>1</i>	1.0 1	6663.1	(15^{+})	6358.0 (14 ⁺)	
315.4 <i>1</i>	26.1 9	6659.52	16-	6344.08 15-	R=0.91 9.
318.8 <i>1</i>	4.8 <i>3</i>	3546.73	10^{+}	3227.96 8-	
319.1 <i>1</i>	45 2	3227.96	8-	2908.87 7-	R=0.87 2.
334.7 1	2.2 2	5495.91	13+	5161.27 12+	R=1.0 <i>3</i> .
355.6 4	0.5 2	(2112.53)	2+	1756.9 0+	
360.9 1	17.6 9	5522.19	13+	5161.27 12+	R=0.94 10.
366.6 1	3.9 2	6344.08	15-	5977.57 13-	
407.3 1	19 2	2773.43	6-	2366.10 5-	R=0.82 <i>6</i> .

Continued on next page (footnotes at end of table)

104 Ru(18 O, $\alpha 2n\gamma$) **1998Sa30** (continued)

$\gamma(^{116}\text{Sn})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}		C	omments	
416.9 1	12.8.8	2529.43	4+	2112.53?	2^{+}				
422.6 1	15.0.5	7082.15	17-	6659.52	$\frac{-}{16^{-}}$	R=0.87 6			
437.2 3	0.9 2	3210.6	7-	2773.43	6-				
447 1	0.5 1	6659.52	16-	6213.01	14-				
459.3 1	10.4 9	5161.27	12^{+}	4701.83	11+	R=1.20 10.			
463 1	< 0.1	1756.9	0^{+}	1293.77	2^{+}				
480.2 1	2.0 1	9141.4		8661.2					
502.8 1	10.7 4	3032.23	6+	2529.43	4+				
505.6 <i>3</i>	0.3 1	6213.01	14-	5707.2					
520.3 <i>1</i>	10.3 4	6344.08	15^{-}	5823.68	14^{+}	R=0.79 9.			
542.8 <i>1</i>	30.8 12	2908.87	7-	2366.10	5-	R=0.97 15.			
583.2 1	11.4 6	3492.06	8+	2908.87	7^{-}				
613.8 <i>1</i>	5.1 <i>3</i>	5495.91	13+	4881.95	12^{+}	R=1.26 12.			
641.2 4	22.7 9	3032.23	6+	2391.08	4+	R=1.31 7.			
662.4 2	2.9 4	5823.68	14^{+}	5161.27	12^{+}	R=1.4 3.			
679.6 <i>3</i>	31.1 12	3711.8	8+	3032.23	6+	R=1.29 7.			
717.0 <i>1</i>	10.5 4	6213.01	14-	5495.91	13^{+}	R=0.69 7.			
738.1 <i>1</i>	2.5 3	7082.15	17^{-}	6344.08	15-				
793.4 <i>1</i>	29.2 11	4505.2	10^{+}	3711.8	8+	R=1.26 7.			
794.0 <i>1</i>	7.06	5495.91	13+	4701.83	11^{+}	R=1.40 <i>6</i> .			
818.8 <i>1</i>	5.9 11	(2112.53)	2+	1293.77	2+				
820.4 1	4.0 4	5522.19	13+	4701.83	11^{+}	R=1.14 20.			
844 2	1.9 4	3210.6	7-	2366.10	5-				
844.6 <i>1</i>	3.6 3	5723.24	(12^{-})	4878.63	11^{-}	R=1.2 <i>3</i> .			
882.8 4	25.5 9	5388.0	12^{+}	4505.2	10^{+}	R=1.42 8.			
915.8 <i>1</i>	7.1 4	7229.2	16^{+}	6313.4	14^{+}	R=1.2 2.			
925.4 <i>1</i>	15.3 6	6313.4	14^{+}	5388.0	12^{+}	R=1.26 11.			
941.6 <i>1</i>	8.7 5	5823.68	14^{+}	4881.95	12^{+}	R=1.3 2.			
970.0 <i>1</i>	2.6 3	6358.0	(14^{+})	5388.0	12^{+}				
972.5 1	12.9 14	2266.24	3-	1293.77	2^{+}	R=0.7 2.			
998.7 <i>1</i>	3.5 3	8227.9	18^{+}	7229.2	16+	R=1.3 2.			
1005.3 2	4.0 8	5707.2		4701.83	11^{+}				
1050.7 2	10.3 11	5929.3	(13^{+})	4878.63	11-				
1068.4 3	1.2 3	5573.6	(12^{+})	4505.2	10^{+}				
1072.2 2	6.8 6	2366.10	5-	1293.77	2+				
1094.0 10	1.0 5	9321.9	(20^{+})	8227.9	18+				
1095.9 2	3.2.3	5977.57	13-	4881.95	12+	D 4 70 0			
1097.3 1	25.2	2391.08	4	1293.77	2+	R=1.53 9.			
1098.9 1	17.07	5977.57	13-	4878.63	11-	R=1.44 <i>3</i> .			
1143.9 2	1.4 2	7457.3	(16')	6313.4	14'	D 1114			
1154.9 1	23.2 12	4/01.83	11'	3546.73	10	R=1.1 14.			
1217.12	2.4 /	6098.30	14'	4881.95	12'				
1207.7 1	4.8 4	4495.67	10	3227.96	8 0+	D 140.0			
1293.8 1	48 3	1293.77	2' 10+	0.0	0^{+}	K=1.49 9.			
1333.2 1	3U Z	4001.95	12'	3340.13	10.	K = 1.2 2.			
1502 / 1	20.110	40/0.03	11	5522.49 7082.15	9 17-	R = 1.40 J.			
1570.0.2	3.23	8383.0		7082.15	17-	K=1.0 2.			
15/9.02	1.4 2	8001.2 5161.27	12+	1082.13	1/	D-1 26 15			
1014./ 1	19.29	5320.00	12 ⁺	3546.73	10+	K=1.20 13.			
1/0 <i>3.3 2</i> 2112 <i>1</i> 2	2.010	(2112 53)	$\frac{12}{2^+}$	0.73	0+				
2112, 4 2	1 4	(2112.33)	4	0.0	U				

¹¹⁶₅₀Sn₆₆

 $^{116}_{50}{
m Sn}_{66}$