¹¹⁶Te ε decay **1981Mo10**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009

Parent: ¹¹⁶Te: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.49$ h 4; $Q(\varepsilon)=1.55\times10^3$ 3; $\%\varepsilon+\%\beta^+$ decay=100.0

Activity produced from ${}^{116}Sn({}^{3}He,3n)$, E=32 MeV, enriched target.

Measured: γ (1968Ki07,1968Ra14,1972MoYL,1981Mo10) semi; α (1961Fi05,1968Ra23,1968Ki07) mag spect; $\gamma\gamma$ -coin (1968Ki07) mag spect.

¹¹⁶Sb Levels

E(level)	J^{π}	T _{1/2}
0.0	3+	15.8 min 8
93.75 6	1^{+}	
103.02 6	2+	
466.00 7	(3,4)	
550.87 6	2+	
574.46 6	(2,3,4)	
731.70 7	1+	
917.69 10	1^{+}	
1158.29 10	1+	

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.9 \times 10^2 \ 3)$	1158.29		0.96 9	5.6 3	0.96 9	$\varepsilon K = 0.844 \ 7; \ \varepsilon L = 0.124 \ 5; \ \varepsilon M + = 0.0327 \ 16$
$(6.3 \times 10^2 \ 3)$	917.69		0.38 8	6.44 18	0.38 8	ε K= 0.8506 21; ε L= 0.1183 16; ε M+= 0.0311 5
$(8.2 \times 10^2 \ 3)$	731.70		4.36 10	5.61 12	4.36 10	ε K= 0.8531 <i>12</i> ; ε L= 0.1164 <i>9</i> ; ε M+= 0.0305 <i>3</i>
$(1.46 \times 10^3 \ 3)$	93.75	0.6 11	93.7 15	4.79 7	94.3 10	av $E\beta = 206 \ 44$; $\varepsilon K = 0.851 \ 6$; $\varepsilon L = 0.1130 \ 11$;
						$\varepsilon M += 0.0295 3$

E(decay): E(β^+)=440 100 (1961Fi05) mag spect.

[†] Absolute intensity per 100 decays.

$\gamma(^{116}\text{Sb})$

I γ normalization: from I(γ +ce)=100 to g.s.; 1968Ki07 give I γ (94 γ)=29% 1, from a ratio of γ 's in an equilibrium ¹¹⁶Te, ¹¹⁶Sb source.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\alpha^{\#}$	Comments
93.7 1	31.2 13	93.75	1+	0.0	3+	E2	2.07	α(K)=1.44; α(L)=0.50; α(M)=0.10 K:L:M=100 3:34.8 17:8.9 10 (1961Fi05) K/L: K:L:M=100 2:35.6 7:8.45 15 (1968Ra23).
103.0 <i>1</i>	1.87 <i>10</i>	103.02	2+	0.0	3+	M1	0.575	$\alpha(K)=0.496; \alpha(L)=0.064; \alpha(M)=0.073$ $\alpha(K)\exp=0.67 7$ Mult.: $\alpha(K)\exp$ deduced by 1981Mo10 from γ intensities and 1968Ra23 conversion electron measurements, if $\alpha(K)(93.7)=1.52$. From ce data of 1961Fi05, 1981Mo10 deduce $\alpha(K)=0.47$.
108.5 <i>1</i> 157.2 <i>1</i>	0.047 <i>6</i> 0.41 <i>2</i>	574.46 731.70	(2,3,4) 1 ⁺	466.00 574.46	(3,4) (2,3,4)			I_{γ} : I_{γ} deduced from an intensity balance at the 575 level.

Continued on next page (footnotes at end of table)

¹¹⁶Te ε decay **1981Mo10** (continued)

$\gamma(^{116}\text{Sb})$ (continued)

Eγ	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Comments
180.9 <i>1</i>	0.22 1	731.70	1^{+}	550.87	2+	
363.0 1	0.059 8	466.00	(3,4)	103.02	2+	
366.8 1	0.13 1	917.69	1+	550.87	2^{+}	
447.8 1	0.05^{\dagger} 1	550.87	2^{+}	103.02	2^{+}	
457.2 <i>1</i>	0.10 1	550.87	2+	93.75	1+	
466.0 1	0.0070 15	466.00	(3,4)	0.0	3+	E_{γ} : not observed in Te ε decay. Eγ is from E(level) difference. Iγ is based on Iγ/Iγ(363γ)=0.12 2 in (p,nγ).
471.4 <i>1</i>	0.042 [†] 4	574.46	(2,3,4)	103.02	2+	E_{γ} : seen only in $\gamma\gamma$.
480.6 1	0.37 1	574.46	(2,3,4)	93.75	1+	, , , , , , , , , , , , , , , , , , , ,
550.9 1	0.29 1	550.87	2+	0.0	3+	
574.5 1	0.036 [†] 5	574.46	(2,3,4)	0.0	3+	
583.8 1	0.087 11	1158.29	1+	574.46	(2,3,4)	
628.7 1	3.03 2	731.70	1^{+}	103.02	2+	
637.9 2	0.71 2	731.70	1+	93.75	1+	
824.0 2	$0.11^{\dagger} 2$	917.69	1^{+}	93.75	1+	
917.7 2	0.14 2	917.69	1^{+}	0.0	3+	
1055.3 2	0.48 13	1158.29	1^{+}	103.02	2+	I_{γ} : I γ from I γ /I γ (584 γ)=5.6 13 in (p,n γ).
1064.6 2	0.19 5	1158.29	1^{+}	93.75	1^{+}	I_{γ} : I_{γ} from $I_{\gamma}/I_{\gamma}(584\gamma)=2.2$ 6 in (p,n γ).

[†] I γ derived from $\gamma\gamma$.

[‡] For absolute intensity per 100 decays, multiply by 1.06 5.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹¹⁶Te ε decay 1981Mo10

