¹¹⁶Rh β^- decay (0.57 s) 2001Wa04,1988Ay02

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009			

Parent: ¹¹⁶Rh: E=150; J^{π}=(6⁻); T_{1/2}=0.57 s 5; Q(β ⁻)=9.22×10³ 15; % β ⁻ decay=100.0 ¹¹⁶Rh-E: from 1997Au04.

By taking advantage of higher production yields and more efficiency, detectors, 2001Wa04, same group as 1988Ay02 have remeasured the decay of ¹¹⁶Rh.

Activity: ²³⁸U(p,F) E(p)=20 MeV, mass separator IGISOL.

After each cycle, the acquisition system was blocked while the tape moved forward about 20 cm in 0.3 s. In the detection setup, a 2 mm thick BC408 cylindrical plastic scintillator was used for detection of β particles with the total efficiency of about 60%. Four

large volume Eurogam phase-I Ge detectors with relative efficiency of 70% in each, were used to detect γ rays.

Measured: γ , $\gamma\gamma$, β ce, T_{1/2},Ge(Li), Si(Li).

Conversion electron measurements support the E2 character for 340y, 538y. No evidence for strong E0 transition (1988Ay02).

Authors have assign the intensities of the gammas by assuming that the 1⁺ decay directly populates only states with I<2. This argument is supported by the intensity balance for the 1066.2-keV 3⁺ level indicating no direct β feeding. Accordingly, only the

340.3-keV 2⁺ and 737.9 2+ levels are populated in both β decays. The intensities of 340.3, 397.7, and 737.8-keV γ transitions are then separated, as the β feedings must be negligible to the 340.3 and 737.9-keV levels in the decay of high-spin isomer.

¹¹⁶ Pd	Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}
0.0 340.26 8 737.85 8 877.58 12 1066.21 10	$ \begin{array}{r} 0^+ \\ 2^+ \\ 2^+ \\ 4^+ \\ 3^+ \\ 4^+ \end{array} $	1694.87 <i>15</i> 1718.21 <i>14</i> 1809.88 <i>12</i> 1982.39 <i>13</i> 2101.0 <i>4</i> 2275 64 <i>17</i>	$ \begin{array}{c} (3^{-},4^{+})\\ 5^{+}\\ 4^{-}\\ 5^{-}\\ (6^{+})\\ (6^{-}) \end{array} $	2333.1 5 2343.4 4 2432.72 24 2435.44 19 2448.52 13 2401.6 4	(8^+) (7^-) (6^-) 7^+	2617.2 <i>4</i> 2654.3 <i>5</i> 2718.01 <i>21</i> 2812.5 <i>5</i> 2868.95 <i>17</i>	(7 ⁻)
1558.98 <i>14</i>	6^{+}	2315.56 16	(0)	2603.25 23	7		

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(6.50 \times 10^3 \ 15)$	2868.95	4.3 5	5.87 8	av E β =2919 72
$(6.56 \times 10^3 \ 15)$	2812.5	0.6 1	6.75 10	av E β =2946 72
$(6.65 \times 10^3 \ 15)$	2718.01	2.6 3	6.14 8	av E β =2991 72
$(6.72 \times 10^3 \ 15)$	2654.3	0.7 1	6.73 9	av E β =3021 72
$(6.75 \times 10^3 \ 15)$	2617.2	1.2 1	6.50 7	av E β =3039 72
$(6.77 \times 10^3 \ 15)$	2603.25	4.2 5	5.96 8	av E β =3045 72
$(6.88 \times 10^3 \ 15)$	2491.6	1.1 <i>1</i>	6.58 7	av E β =3099 72
$(6.92 \times 10^3 \ 15)$	2448.52	26.8 25	5.20 7	av Eβ=3119 72
$(6.93 \times 10^3 \ 15)$	2435.44	10.9 11	5.60 8	av Eβ=3125 72
$(6.94 \times 10^3 \ 15)$	2432.72	1.7 5	6.40 14	av Eβ=3127 72
$(7.03 \times 10^3 \ 15)$	2343.4	1.0 1	6.66 8	av E β =3169 72
$(7.04 \times 10^3 \ 15)$	2333.1	1.9 5	6.38 13	av E β =3174 72
$(7.05 \times 10^3 \ 15)$	2315.56	4.5 7	6.01 9	av E β =3183 72
$(7.09 \times 10^3 \ 15)$	2275.64	8.6 9	5.74 8	av E β =3202 72
$(7.27 \times 10^3 \ 15)$	2101.0	1.1 3	6.68 13	av E β =3285 72
$(7.39 \times 10^3 \ 15)$	1982.39	6.5 18	5.94 14	av E β =3341 72
$(7.56 \times 10^3 \ 15)$	1809.88	0.9 21	6.8 11	av E β =3424 72
$(7.65 \times 10^3 \ 15)$	1718.21	3.6 10	6.27 14	av Eβ=3467 72
$(7.68 \times 10^3 \ 15)$	1694.87	4.8 8	6.15 9	av E β =3478 72
$(7.81 \times 10^3 \ 15)$	1558.98	0.4 14	7.3 16	av E β =3543 72

Continued on next page (footnotes at end of table)

From ENSDF

¹¹⁶Rh β^- decay (0.57 s) **2001Wa04,1988Ay02** (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
$(8.00 \times 10^3 \ 15)$	1373.01	3.9 10	6.32 13	av Eβ=3632 72		
$(8.49 \times 10^3 \ 15)$	877.58	74	6.2 3	av Eβ=3867 72		

[†] Absolute intensity per 100 decays.

 $\gamma(^{116}\text{Pd})$

I γ normalization: from Σ I(γ +ce to g.s.)=^{100,}No β to g.s..

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
172.4 2	1.1 2	1982.39	5-	1809.88	4-
269.5 2	1.5 1	2718.01		2448.52	(6^{-})
287.7 2	3.5 2	2603.25		2315.56	(0)
293.2 <i>3</i>	3.3 2	2275.64	(6 ⁻)	1982.39	5-
328.4 1	19.1 <i>12</i>	1066.21	3+	737.85	2+
340.3 1	100.0	340.26	2+	0.0	0^{+}
397.7 <i>1</i>	19.2 27	737.85	2+	340.26	2+
420.5 2	1.0 <i>I</i>	2868.95		2448.52	(6 ⁻)
437.1 2	1.2 2	1809.88	4-	1373.01	4+
453.0 2	2.7 4	2435.44	(7-)	1982.39	5-
465.8 2	3.9 6	2275.64	(6 ⁻)	1809.88	4-
466.1 <i>1</i>	12.8 11	2448.52	(6 ⁻)	1982.39	5-
495.5 2	2.9 2	1373.01	4+	877.58	4+
537.3 <i>1</i>	52.9 40	877.58	4+	340.26	2+
553.5 2	2.0 1	2868.95		2315.56	
557.4 2	2.5 2	2275.64	(6 ⁻)	1718.21	5+
609.4 2	3.0 2	1982.39	5-	1373.01	4+
620.9 2	8.2 5	2315.56		1694.87	$(3^{-},4^{+})$
628.9 <i>2</i>	8.7 6	1694.87	$(3^{-},4^{+})$	1066.21	3+
635.3 2	8.3 10	1373.01	4+	737.85	2+
638.7 <i>1</i>	19.4 <i>14</i>	2448.52	(6 ⁻)	1809.88	4-
652.0 <i>1</i>	11.1 10	1718.21	5+	1066.21	3+
681.4 <i>1</i>	15.9 14	1558.98	6+	877.58	4+
714.5 2	1.9 5	2432.72		1718.21	5+
725.9 <i>1</i>	27.9 20	1066.21	3+	340.26	2+
728.0 <i>3</i>	1.2 3	2101.0	(6^{+})	1373.01	4+
737.8 <i>1</i>	13.2 16	737.85	2^{+}	0.0	0^{+}
743.6 <i>1</i>	25.5 18	1809.88	4-	1066.21	3+
773.4 <i>3</i>	1.2 <i>I</i>	2491.6	7+	1718.21	5+
784.4 <i>3</i>	1.1 <i>I</i>	2343.4	(8+)	1558.98	6+
876.5 2	9.6 7	2435.44	(7^{-})	1558.98	6+
886.5 <i>3</i>	0.6 1	2868.95		1982.39	5-
889.5 4	0.6 2	2448.52	(6 ⁻)	1558.98	6+
899.0 <i>3</i>	1.4 <i>I</i>	2617.2		1718.21	5+
942.5 2	1.4 <i>I</i>	2315.56		1373.01	4+
957.0 2	4.9 4	1694.87	$(3^{-},4^{+})$	737.85	2+
1044.2 4	1.2 3	2603.25		1558.98	6+
1058.7 3	1.3 4	2868.95		1809.88	4-
1095.3 4	0.8 1	2654.3	(7-)	1558.98	6+
1104.7 2	22.7 16	1982.39	5-	877.58	4+
1159.0 <i>3</i>	1.4 <i>I</i>	2718.01		1558.98	6+

Continued on next page (footnotes at end of table)

¹¹⁶Rh β^- decay (0.57 s) 2001Wa04,1988Ay02 (continued)

γ ⁽¹¹⁶Pd) (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1253.5 4	0.7 1	2812.5		1558.98	6+
1437.7 6	1.0 3	2315.56		877.58	4^{+}
1455.5 4	2.1 6	2333.1		877.58	4+

 † For absolute intensity per 100 decays, multiply by 0.88 9.

¹¹⁶Rh β^- decay (0.57 s) 2001Wa04,1988Ay02

$\frac{116}{10}$ Rh β^- decay (0.57 s) 2001 Wa04,1988 Ay02

Decay Scheme (continued)

 $^{116}_{46}{\rm Pd}_{70}$

5