Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	20-Jul-2015		

 $Q(\beta^{-})=9960 SY; S(n)=4820 SY; S(p)=17440 SY; Q(\alpha)=-10110 SY$ 2012Wa38

Estimated uncertainties (2012Wa38): 580 for $Q(\beta^-)$, 640 for S(n), 710 for S(p), 860 for $Q(\alpha)$.

 $Q(\beta^{-}n)=6340\ 540,\ S(2n)=7840\ 580\ (syst,2012Wa38).\ S(2p)=32700\ (1997Mo25,theory).$

2010Oh02: ¹¹⁶Mo nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹¹⁶Mo nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 78 counts were assigned to ¹¹⁶Mo isotope. (Q=charge state).

2015Lo04: ¹¹⁶Mo nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹¹⁶Mo was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹¹⁶Mo isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations. 1997Sk01: calculated ground state, excited minimum, quadrupole moment.

¹¹⁶Mo Levels

E(level)	J^{π}	T _{1/2}	Comments		
0	0^{+}	32 ms 4	$\sqrt[\infty]{\beta^{-}=?}; \sqrt[\infty]{\beta^{-}n=?}; \sqrt[\infty]{\beta^{-}2n=?}$		
			Theoretical $T_{1/2}=50.6$ ms, $\%\beta^{-}n=7.8$, $\%\beta^{-}2n=0.0$ (2003Mo09).		
			Measured $\sigma = 72$ pb (2010Oh02), systematic uncertainty $\approx 40\%$.		
			$T_{1/2}$: measured by 2015Lo04 from (implanted ions) β correlated curves in time and position using		
			maximum likelihood method. See 2015Lo04 for comparison of their experimental value with		
			theoretical values		

Probability of misidentification of ¹¹⁶Mo isotope<0.001% (2010Oh02).