¹¹⁶I IT decay **1990Wu01** Type Author Citation Literature Cutoff Date Full Evaluation Jean Blachot NDS 111, 717 (2010) 1-Dec-2009 Parent: 116 I: E=430.4 5; $T_{1/2}$ =3.27 μ s 16; %IT decay=100.0 Activity: 92 Mo(28 Si,3pn γ) E=120 MeV. Measured: γ , $\gamma\gamma$, recoil-mass spectrometer (RMS), γ (t). The RMS determines with a good separation the nucleus which is isomer. The γ 's are not placed in a level scheme, but two independent branches are found from $\gamma\gamma$ correlations. One path includes 65, 105 (doublet), 109 γ 's. The other: 114, 227 γ 's. The first cascade gives E(isomer) \geq 385. One component of 105 doublet could correspond to the 104.5 γ seen in 116 Xe ε decay. ¹¹⁶I Levels E(level) $T_{1/2}$ 0.0 430.4 5 3.27 μ s 16 $\gamma(^{116}I)$ $\frac{E_{\gamma}}{^{x}65.4}$ $\frac{I_{\gamma}}{^{x}65.4}$ $\frac{E_{i}(\text{level})}{^{x}105}$ $\frac{E_{\gamma}}{^{x}109.6}$ $\frac{E_{\gamma}}{^{x}114.2}$ $\frac{E_{\gamma}}{^{x}1$ $^{^{}x}$ γ ray not placed in level scheme.