103 Rh(16O,3n γ) 2004Mo02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009

¹¹⁶I Levels

E=80 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$ using an array of seven HPGe detectors with BGO anti-Compton shields. One of the detectors was an LEPS detector.

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	E(level) [†]	J^{π}	E(level) [†]	J^{π}
0.0	1^{+}	2.91 s	1097.3 [#] 4	(10 ⁺)	3461.8 ^f 5	(16 ⁻)
0+x			1132.2 ^{<i>a</i>} 5	(10 ⁻)	3527.0 ^{&} 6	(17^{+})
104.3 <i>3</i>			1260.4+x ^d	(12 ⁻)	3563.8+x d	
214.2 4			1316.3 ^c 6	(9 ⁻)	3818.8 [#] 6	(18^{+})
227.0 3	(3+)		1345.5 [@] 5	(11^{+})	3950.0 <mark>°</mark> 6	(17 ⁻)
320.3 5			1399.2 ^e 5	(11 ⁻)	4104.3 <mark>b</mark> 6	(18 ⁻)
341.1 4	(4^{+})		1565.7 [#] 5	(12^{+})	4197.5 [@] 6	(19 ⁺)
376.5 4	(5 ⁺)		1756.7 ^ƒ 5	(12 ⁻)	4331.3 ^{&} 6	(19 ⁺)
386.1 5			1829.8 ^a 5	(12 ⁻)	4447.6 ^f 6	(18-)
430.4 ^e 5	(7 ⁻)	3.27 µs	1874.2 [@] 5	(13 ⁺)	4806.4 [#] 7	(20^{+})
468.5 ^a 4	(8 ⁻)		1933.2+x ^d		4980.0 ^b 7	(20 ⁻)
479.8 4			2143.7 <mark>°</mark> 5	(13 ⁻)	5186.6 [@] 6	(21^{+})
519.0 4			2185.8 [°] 7		5248.0 <mark>&</mark> 7	(21^+)
560.0 [°] 5	(9 ⁻)		2186.9 [#] 5	(14^{+})	5887.7 <mark>b</mark> 7	(22 ⁻)
570.7 ^f 5	(8 ⁻)		2532.7 [@] 5	(15 ⁺)	5938.8 7	(22 ⁻)
571.6 4			2547.6 <mark>b</mark> 5	(14-)	6215.0 <mark>b</mark> 7	(24-)
647.8+x			2559.7 ^ƒ 5	(14 ⁻)	6243.5 <mark>&</mark> 7	(23+)
664.5 5			2689.3 6		6262.3 [@] 7	(23 ⁺)
702.6+x			2709.4+x ^d		7170.1 ^{&} 7	(25^+)
791.7 <mark>°</mark> 5	(9-)		2936.0 [#] 5	(16 ⁺)	7229.5 8	
874.3 4	(8 ⁺)		2998.9 ^e 5	(15 ⁻)	8188.0 7	
1063.7 4	(9+)		3293.4 [@] 6	(17^{+})		
1075.1 ^f 5	(10 ⁻)		3295.9 <mark>6</mark> 5	(16 ⁻)		

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

[#] Band(A): $\pi 1/2[550]\nu 3/2[541]$, $\alpha = 0$.

[@] Band(a): $\pi 1/2[550]v3/2[541]$, $\alpha = 1$.

& Band(B): $\pi h_{11/2} v h_{11/2}$, At higher frequencies, crossing may be due to v 5/2[532] pair in the presence of $\pi 1/2[550]v 3/2[541]$.

^{*a*} Band(C): $\pi 3/2[422]\nu 3/2[541]$, $\alpha = 0$.

^b Band(c): $\pi 1/2[550]v5/2[413]$ coupled to $\pi 3/2[422]^2$ at low spins (16-20); above 20⁻, it is non-collective with 24⁻ as fully aligned 6 qp state: $\pi(h_{11/2}g_{7/2}^2)\nu(g_{7/2}h_{11/2}^2)$.

^{*c*} Band(D): $\pi 3/2[422]\nu 3/2[541]$, $\alpha = 1$.

^d Band(E): $\pi h_{11/2} \nu g_{7/2}$ coupled to Xe core rotational states.

^e Band(F): $\pi 9/2[404]v3/2[541]$, $\alpha = 1$.

^{*f*} Band(f): $\pi 9/2[404]v3/2[541]$, $\alpha = 0$.

103 Rh(16 O,3n γ) 2004Mo02 (continued)

$\gamma(^{116}I)$

 $R(0^{\circ}/117^{\circ})$ is the angular intensity ratio by setting gates on the 0° and 117° axes of $\gamma\gamma$ matrix; $R\approx1$ if both the gating observed transitions are stretched and of the same mult; $R\approx0.6$ if gate is on $\Delta J=2$ stretched and observed transition is $\Delta J=1$, dipole; $R\approx1.6$ of gating transition is $\Delta J=1$ stretched dipole and observed transition is $\Delta J=2$ stretched. R values are for $\Delta J=2$, stretched quadrupole transitions, unless otherwise stated.

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. <mark>&</mark>	Comments
33.6 <i>3</i>		1097.3	(10 ⁺)	1063.7 (9 ⁺)	M1+E2	
35.4 3		376.5	(5^{+})	$341.1 (4^+)$		
39.23		130 A	(7^{-})	479.8		
50.5 3		430.4 519.0	(r)	468.5 (8 ⁻)		
65.8 [@] 3		386.1		320.3		
91.5 [#] 3		560.0	(9 ⁻)	468.5 (8-)		
92.0 [#] 3	28.5 15	468.5	(8 ⁻)	376.5 (5+)	E3	$R(0^{\circ}/117^{\circ})=0.58$ 16.
103.1 3	8.1 8	571.6		468.5 (8 ⁻)		Mult.: $\Delta J=1$ transition.
104.33		104.3		0.0 1+		
$106.1 \overset{\circ}{\sim} 3$		320.3		214.2		
109.9 3	02 5 20	214.2 341.1	(4^+)	104.3 227.0 (3 ⁺)	M1+F2	$R(0^{\circ}/117^{\circ}) - 0.42.8$
13873	92.5 20	J41.1 470.8	(4)	$227.0 (3^{+})$	₩11+L2 †	R(0/117) = 0.42 0. $P(0^{\circ}/117^{\circ}) = 0.51$ 18
140.3 3	25.0 25	570.7	(8^{-})	$430.4 (7^{-})$	M1	$R(0^{\circ}/117^{\circ})=0.51$ 18. $R(0^{\circ}/117^{\circ})=0.61$ 15.
142.5.3	2.6 6	519.0	(0)	$376.5 (5^+)$	D^{\dagger}	$R(0^{\circ}/117^{\circ})=0.62$ 25.
149.5 3	8.9 8	376.5	(5 ⁺)	227.0 (3 ⁺)	E2	$R(0^{\circ}/117^{\circ})=0.8 \ 3.$
177.9 <i>3</i>	3.8 7	519.0		341.1 (4+)		$R(0^{\circ}/117^{\circ})=0.9$ 3.
184.7 3	7.5 4	664.5		479.8	DÏ	$R(0^{\circ}/117^{\circ})=0.61\ 23.$
189.4 3	45.5 11	1063.7	(9+)	$874.3 (8^+)$ $276.5 (5^+)$	M1+E2	$R(0^{\circ}/117^{\circ})=0.37$ 11. $P(0^{\circ}/117^{\circ})=0.7$ 2
195.1 5	0.97	371.0 974.2	(0+)	570.5 (5)	DŤ	R(0/117) = 0.73. $P(0^{\circ}/117^{\circ}) = 0.4.2$
209.8 3	5.80 814	874.5	(8^{+}) (12^{+})	1345.5 (11 ⁺)	D M1+E2	R(0/117) = 0.4 S. Initial level listed as 1505 7 in authors' table 1 is a
220.2 5	0.1 /	100017	(12)	101010 (11)	1011 1 112	misprint.
						$R(0^{\circ}/117^{\circ})=0.52$ 9.
221.0 3	28.5 7	791.7	(9 ⁻)	570.7 (8-)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=0.96$ 8.
223.0 3	27.7 6	1097.3	(10^+)	$874.3 (8^+)$	E2	$R(0^{\circ}/117^{\circ})=0.93$ 3.
227.0 3	21.0.5	227.0 1345.5	(3^{+}) (11^{+})	$0.0 \ 1^{-1}$	E_{1} M1 + E2	$R(0^{\circ}/117^{\circ})=0.98$ 3. $P(0^{\circ}/117^{\circ})=0.48$ 5
276.2 3	3.4 4	6215.0	(11^{-})	$5938.8 (22^{-})$	E2	$R(0^{\circ}/117^{\circ})=1.03.$
283.4 3	22.0 17	1075.1	(10 ⁻)	791.7 (9 ⁻)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.01$ 6.
288 [@]		664.5	. ,	376.5 (5 ⁺)		
302.7 3	19.3 9	874.3	(8^{+})	571.6	D^{\dagger}	$R(0^{\circ}/117^{\circ})=0.51$ 7.
308.5 <i>3</i>	22.5 6	1874.2	(13+)	1565.7 (12+)	M1+E2	$R(0^{\circ}/117^{\circ})=0.38 8.$
312.7 3	<1	2186.9	(14^{+})	1874.2 (13 ⁺)	M1+E2	
324.1 3	18.1 19	1399.2	(11^{-})	1075.1 (10 ⁻)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=0.96$ 7.
327.3 3	12.0 13	6215.0 2532.7	(24)	5887.7(22) 2186.9(14 ⁺)	E2 M1⊥E2	$R(0^{\circ}/11^{\circ})=0.96$ 15. $R(0^{\circ}/117^{\circ})=0.47$ 0
255 2 2	38 2 8	2552.7	(13)	510.0	₩11+L2 †	R(0/117) = 0.47 5 $P(0^{0}/117^{0}) = 0.48 5$
357.4 3	7.4 6	3293.4	(17^+)	2936.0 (16 ⁺)	M1+E2	$R(0^{\circ}/117^{\circ})=0.45$ 9.
357.5 3	16.4 13	1756.7	(12^{-})	1399.2 (11 ⁻)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.06\ 10.$
378.7 3	3.3 4	4197.5	(19+)	3818.8 (18+)	M1+E2	
387.0 <i>3</i>	9.8 10	2143.7	(13-)	1756.7 (12-)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.14$ 12.
403.9 <i>3</i>	5.1 9	2547.6	(14 ⁻)	2143.7 (13 ⁻)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.17$ 8.

Continued on next page (footnotes at end of table)

¹⁰³Rh(¹⁶O,3nγ) **2004Mo02** (continued)

γ ⁽¹¹⁶I) (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^{&}	Comments
405.8 3	2.6 4	874.3	(8+)	468.5	(8-)		
416.0 <i>3</i>	5.6 7	2559.7	(14 ⁻)	2143.7	(13-)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.17$ 13.
439.2 <i>3</i>	2.1 6	2998.9	(15 ⁻)	2559.7	(14 ⁻)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.16$ 18.
462.9 <i>3</i>	2.1 6	3461.8	(16 ⁻)	2998.9	(15 ⁻)	M1+E2 [‡]	$R(0^{\circ}/117^{\circ})=1.15\ 20.$
468.4 <i>3</i>	61.4 12	1565.7	(12^{+})	1097.3	(10^{+})	E2	$R(0^{\circ}/117^{\circ})=1.07$ 4.
488.2 3	1.7 5	3950.0	(17^{-})	3461.8	(16^{-})	M1+E2	
497.63	1.2.5	4447.6	(18)	3950.0	(17)	MI+E2	
504.4 3	3.5 6	1075.1	(10)	570.7	(8)	E2* E2	$R(0^{\circ}/11^{\circ}) = 1.6/15.$ $R(0^{\circ}/117^{\circ}) = 1.04.8$
537.3.3	4.5.4	1074.2	(13^{+})	560.0	(11) (9^{-})	E2 E1	$R(0/117) = 1.04 \ 0.$ $R(0^{\circ}/117^{\circ}) = 0.61 \ 15.$
557.8 [@]	110	1260.4 + x	(12^{-})	702.6+x	(-)	21	
$572.7^{@}$		1132.2	(12^{-})	560.0	(9^{-})		
595.2 3	8.5 6	1063.7	(9^+)	468.5	(8 ⁻)	E1	$R(0^{\circ}/117^{\circ})=0.49$ 8.
607.5 <i>3</i>	5.5 7	1399.2	(11^{-})	791.7	(9 ⁻)	E2 [‡]	$R(0^{\circ}/117^{\circ})=1.39$ 15.
612.6 [@]		1260.4+x	(12^{-})	647.8+x			
621.2 <i>3</i>	40.5 10	2186.9	(14+)	1565.7	(12^{+})	E2	$R(0^{\circ}/117^{\circ})=1.00$ 5.
647.8 [@]		647.8+x		0+x			
658.5 3	19.7 7	2532.7	(15^+)	1874.2	(13^{+})	E2	$R(0^{\circ}/117^{\circ}) = 1.08$ 7.
663.7 3	18.3 11	1132.2	(10^{-})	468.5	(8 ⁻)	E2	$R(0^{\circ}/11^{\circ})=0.95$ 12.
672.8°	z1	1933.2+x	(14^{-})	1260.4 + x	(12^{-})	E1	
69162	710	2347.0	(14)	1075.1	(13)		$P(0^{\circ}/117^{\circ}) = 1.02.22$
697 6 3	15710	1829.8	(12^{-})	1075.1	(10^{-})	E2· E2	R(0/117) = 1.92/22. $R(0^{\circ}/117^{\circ}) = 0.96/13$
717.8 3	10.1 9	2547.6	(12^{-})	1829.8	(10^{-})	E2	$R(0^{\circ}/117^{\circ})=0.99$ 15.
736.2 <i>3</i>	<1	3295.9	(16 ⁻)	2559.7	(14 ⁻)	E2	
744.5 <i>3</i>	6.6 10	2143.7	(13 ⁻)	1399.2	(11 ⁻)	E2 [‡]	$R(0^{\circ}/117^{\circ})=1.68\ 25.$
748.3 3	26.6 11	3295.9	(16 ⁻)	2547.6	(14 ⁻)	E2	$R(0^{\circ}/117^{\circ})=1.00 \ 8.$
749.1 3	21.0 7	2936.0	(16^{+})	2186.9	(14^{+})	E2	$R(0^{\circ}/117^{\circ})=1.16$ 7.
754.75	<1	1029.0	(12)	560.0	(10)	EZ	
750.5 -	16.0.7	3293.4	(9) (17^+)	2532.7	(9) (15^+)	F2	$R(0^{\circ}/117^{\circ}) = 1.08.8$
763.2 3	<1	3295.9	(17^{-})	2532.7	(15^+)	E1	R(0 /11 /)=1.00 0.
776.2 [@]		2709.4+x		1933.2+x	()		
790.9 <i>3</i>	5.9 6	2547.6	(14 ⁻)	1756.7	(12 ⁻)	E2	$R(0^{\circ}/117^{\circ})=1.0 \ 3.$
803.0 3	4.6 7	2559.7	(14 ⁻)	1756.7	(12-)	E2	
804.3 3	9.0 12	4331.3	(19^{+})	3527.0	(17^{+})	E2	$R(0^{\circ}/117^{\circ}) = 1.10\ 23.$
808.4.3	25.0 9	4104.3	(18)	3295.9	(16)	E2	$R(0^{2}/11/^{2})=1.04$ 15.
855 2 3	327	2002.8+X 2008.0	(15^{-})	2709.4+X 2143.7	(13^{-})	F2	
859.5 3	<1	2689.3	(15)	1829.8	(13^{-})	62	
869.5 [@]		2185.8		1316.3	(9 ⁻)		
875.7 <i>3</i>	22.6 10	4980.0	(20^{-})	4104.3	(18 ⁻)	E2	$R(0^{\circ}/117^{\circ})=1.08$ 17.
882.8 <i>3</i>	9.8 4	3818.8	(18^{+})	2936.0	(16^{+})	E2	(18^{-}) to (16^{-}) listed in authors' table 1 is a misprint.
002 1 2	255	2461.9	(16^{-})	2550 7	(14-)	E2	$R(0^{\circ}/117^{\circ})=0.90\ 10.$
902.1 3	2.5 5	3401.8 4197 5	(10^{+})	3293.4	(14) (17^+)	E2 E2	$R(0^{\circ}/117^{\circ}) = 1.15 II$
907.7 3	12.8 8	5887.7	(22^{-})	4980.0	(20^{-})	E2	$R(0^{\circ}/117^{\circ})=1.00\ 20.$
907.8 <i>3</i>	8.0 15	7170.1	(25+)	6262.3	(23+)	E2	$R(0^{\circ}/117^{\circ})=1.2$ 3.
916.7 3	8.6 14	5248.0	(21^+)	4331.3	(19^+)	E2	$R(0^{\circ}/117^{\circ}) = 1.02\ 25.$
926.6 <i>3</i>	6.6 <i>13</i>	7170.1	(25^+)	6243.5	(23^{+})	E2 E2	$R(0^{\circ}/11^{\circ})=1.0$ 3.
958.8.3	1.84 505	5938 8	(17) (22^{-})	2998.9 4980 0	(15) (20^{-})	Е2 E2	(18^{-}) to (16^{-}) listed in authors' table 1 is a misorint
/ 0.0 5	5.0 5	5750.0	(22)	1200.0	(20)		

Continued on next page (footnotes at end of table)

103 Rh(16 O,3n γ) 2004Mo02 (co	ntinued)
---	----------

γ ⁽¹¹⁶I) (continued)</sup>

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^{&}	Comments
985.8 <i>3</i>	0.9 2	4447.6	(18 ⁻)	3461.8 (16-)	E2	
987.6 <i>3</i>	2.7 3	4806.4	(20^{+})	3818.8 (18+)	E2	
989.1 <i>3</i>	8.2 <i>3</i>	5186.6	(21^{+})	4197.5 (19+	E2	$R(0^{\circ}/117^{\circ})=1.10$ 17.
994.3 <i>3</i>	9.5 18	3527.0	(17^{+})	2532.7 (15+)	E2	$R(0^{\circ}/117^{\circ})=1.2 3.$
995.5 <i>3</i>	7.5 18	6243.5	(23^{+})	5248.0 (21+	E2	$R(0^{\circ}/117^{\circ})=1.0$ 3.
1014.5 3	6.7 8	7229.5		6215.0 (24-)	
1017.9 <i>3</i>	8.2 8	8188.0		7170.1 (25+	, †	$R(0^{\circ}/117^{\circ})=0.5 3.$
1075.7 <i>3</i>	4.0 4	6262.3	(23^{+})	5186.6 (21+)	E2	

[†] $\Delta J=1$ transition from R(0°/117°). [‡] For gate on 140.3 γ , $\Delta J=1$, M1 transition. [#] Unresolved doublet. [@] From figure 1 of 2004Mo02; not listed in authors' table 1. [&] From R values.

 $^{116}_{53}I_{63}$

¹¹⁶₅₃I₆₃

 $^{116}_{53}I_{63}$

¹⁰³Rh(¹⁶O,3nγ) 2004Mo02 (continued)

¹¹⁶₅₃I₆₃