Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jean Blachot	NDS 111,717 (2010)	1-Dec-2009							

 $Q(\beta^{-}) = -7.4 \times 10^3 \text{ syst}$; $S(n) = 1.04 \times 10^4 \text{ syst}$; $S(p) = 7.0 \times 10^2 \text{ syst}$; $Q(\alpha) = 2.58 \times 10^3 \text{ syst}$ 2012Wa38 Note: Current evaluation has used the following Q record -7460 syst 10440 syst 700 syst 2570 syst

Note: Current evaluation has used the following Q record – /460 syst 10440 syst /00 syst 25/0 syst 2003Au03,2009AuZZ.

Estimated uncertainties from 2003Au03: ΔQ =410, ΔSN =320, ΔSP =100, ΔQA =230.

Q(\varepsilon)=6980 110 (syst, 2003Au03).

Two ¹¹⁶Cs isomers have been identified from (β^+) -delayed proton, (β^+) -delayed α , and β^+ decay studies. Their relative position is not known.

Delayed-p and α from ¹¹⁶Cs β^+ decay (3.8 s):

from ¹³⁹La(p,X) E=600 MeV, ms (1978Da07,1978Ka17,1974RaZS). Measurements: $T_{1/2}=3.5 \text{ s} 2 \text{ %I(delayed-p)/I}(\beta^+)=0.36 \text{ 8} \text{ %I(delayed-\alpha)/I}(\beta^+)=8\times10^{-3} 2 \text{ Q}(\varepsilon)-\text{s}(p)(^{116}\text{Xe})=6.45 \text{ MeV} 30 \text{ Q}(\varepsilon)+\text{Q}(\alpha)(^{116}\text{Xe})=12.5 \text{ MeV}.$

from ⁹²Mo(³²S,3p5n) E=190 MeV, ms (1977Bo28,1976Bo36). Measurements: $T_{1/2}=3.9 \text{ s} 4 \% I(\text{delayed-p})/I(\beta^+)=0.66 13 \% I(\text{delayed-a})/I(\beta^+) \le 3.3 \times 10^{-3} \text{ Q}(\varepsilon)-\text{S}(p)(^{116}\text{Xe})=6.4 \text{ MeV} 3.$

from ⁵⁸Ni,⁶³Cu(⁵⁸Ni,xpn). E=290 MeV, ms (1985Ti02) Measurement: $T_{1/2}$ =4.0 s 3 I(delayed-p)/I(delayed-a)=200 80 Delayed-p and α from ¹¹⁶Cs β^+ decay (0.7 s):

from ⁹²Mo(³²S,3p5n) E=190 MeV, ms (1977Bo28). Measurements: $T_{1/2}=0.65 \text{ s} \ 10 \ \% \text{I}(\text{delayed-p})/\text{I}(\beta^+)=0.28 \ 7 \ \% \text{I}(\text{delayed-}\alpha)=4.9\times10^{-2} \ 25 \ \text{Q}(\varepsilon)+\text{Q}(\alpha)(^{116}\text{Xe})=12.3 \ \text{MeV} \ 4.$

R

from ⁵⁸Ni,⁶³Cu(⁵⁸Ni,xpn). E=290 MeV, ms (1985Ti02,1982Ti05) Measurement: $T_{1/2}=0.6$ s *1* I(delayed-p)/I(delayed- γ)=16 4.

¹¹⁶Cs Levels

Cross Reference (XREF) Flags

A 116 Ba ε decay (1.3 s)

 58 Ni(64 Zn, α pn γ)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0	(1^{+})	0.70 s 4	A	$\%\varepsilon + \%\beta^{+} = 100; \ \%\varepsilon = 2.8 \ 7; \ \%\varepsilon = 0.049 \ 25$
				Decay branches taken from 2003Au02 evaluation.
				E(level): from syst of the even Cs, 2003Au02 suggest that the low spin is the g.s.
				$T_{1/2}$: weighted average of 0.65 s 10 (1977Bo28), 0.7 s 2 (1978Da07), 0.72 s 4
				(1980Ma16), 0.6 s 1 (1985Ti02).
				J^{π} : I(delay p)/I(delay a) compared with calculations (1985Ti02), strong feeding
				to 0^+ in ¹¹⁶ Cs β^+ decay (0.70 s).
100 <i>syst</i>	4+,5,6	3.85 s <i>13</i>		$\%\varepsilon + \%\beta^+ = 100; \ \%\varepsilon p = 0.51 \ 15; \ \%\varepsilon \alpha = 0.008 \ 2$
				Decay branches taken from 2003Au02 evaluation.
				$T_{1/2}$: weighted average of 3.9 s 4 (1975Bo11), 3.9 s 3 (1977Bo28), 3.5 s 2
				(1978Da07), 4.1 s 2 (1980Ma16), 4.0 s 3 (1985Ti02).
				J ^{π} : I(delayed p)/I(delayed α compared with calculations (1985Ti02). Strong
				feeding to 6^+ in ¹¹⁶ Cs β^+ decay (3.85 s).
				E(level): 100 60 (systematics, 2003Au02).
0+x			В	E(level): it is possible that this level corresponds to the 3.85-s isomer. $J^{\pi}=4^+,5,6^-$
				would be consistent with the γ -decay pattern from 416.9+x level.
191.8+x <i>1</i>			В	
416.9+x [#] 2	(8^{+})		В	
457+x			В	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$J^{\pi \ddagger}$ $J^{\pi \ddagger}$ E(level) XREF E(level) E(level) $J^{\pi \ddagger}$ XREF XREF 2727.9+x[@] 7 633.1+x[#] 2 6463.7+x[#] 7 (10^{+}) A (17^{+}) В В (24^{+}) 875.8+x[@] 7 6583.8+x[@] 8 3462.8+x[#] 5 (11^{+}) (18^{+}) В (25^{+}) В В 1076.3+x[#] 2 3601.0+x[@] 7 7533.1+x[#] 8 (12^{+}) (19^{+}) В В (26^{+}) В 1318.6+x[@] 6 7751.6+x[@] 9 4481.5+x[#] 6 (13^{+}) В (20^{+}) В (27^{+}) В 9016.3+x[@] 10 1726.3+x[#] 2 4543.3+x[@] 7 (14^{+}) В (21^{+}) В (29^{+}) В 10381.4+x[@] 11 1953.4+x[@] 7 5480.0+x[#] 6 (15^{+}) В (22^{+}) В (31^{+}) В 5530.0+x[@] 7 2537.3+x[#] 3 (23^{+}) (16^{+}) В В

¹¹⁶Cs Levels (continued)

[†] From least-squares fit to $E\gamma's$.

[‡] As proposed by 2006Sm04 based on angular distribution data, long cascades of stretched quadrupole transitions and systematics of neighboring Cs nuclides.

[#] Band(A): $\nu h_{11/2} \otimes \pi h_{11/2}$, $\alpha = 0$.

[@] Band(a): $\nu h_{11/2} \otimes \pi h_{11/2}$, $\alpha = 1$.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
191.8+x		191.8 <i>I</i>	100	0+x			Mult.: stretched Q suggested by γ -ray angular distribution.
416.9+x	(8^{+})	225.1 <i>I</i>	100	191.8+x			Mult.: stretched Q or unstretched mixed D+Q.
633.1+x	(10^{+})	176 [#] 1	7.8 16	457+x			
		216.2 <i>1</i>	100 5	416.9+x	(8^{+})		
		442 [#] 1	16 5	191.8+x			
875.8+x	(11^{+})	243 [‡] 1	100‡	633.1+x	(10^{+})	M1+E2	
1076.3+x	(12^{+})	443.2 <i>1</i>	100	633.1+x	(10^{+})	E2	
1318.6+x	(13^{+})	243 [‡] 1	<57 [‡]	1076.3+x	(12^{+})	M1+E2	
		442.8 1	100 11	875.8+x	(11^+)	E2	
1726.3+x	(14^{+})	650.0 <i>1</i>	100	1076.3+x	(12^{+})	E2	
1953.4+x	(15^{+})	226 1	42 8	1726.3+x	(14^{+})	M1+E2	
		634.8 <i>1</i>	100 8	1318.6+x	(13^{+})	E2	
2537.3+x	(16^{+})	811.0 2	100	1726.3+x	(14^{+})	E2	
2727.9+x	(17^{+})	189 [#] 1	38 5	2537.3+x	(16^{+})		
		774.5 1	100 10	1953.4+x	(15^{+})	E2	
3462.8+x	(18^{+})	925.5 4	100	2537.3+x	(16^{+})	E2	
3601.0+x	(19^{+})	873.1 <i>1</i>	100	2727.9+x	(17^{+})	E2	
4481.5+x	(20^{+})	1018.7 2	100	3462.8+x	(18^{+})	E2	
4543.3+x	(21^{+})	942.3 <i>1</i>	100	3601.0+x	(19^{+})	E2	
5480.0+x	(22^{+})	998.5 2	100	4481.5+x	(20^{+})	E2	
5530.0+x	(23^{+})	986.7 2	100	4543.3+x	(21^{+})	E2	
6463.7+x	(24^{+})	983.7 4	100	5480.0+x	(22^{+})		
6583.8+x	(25^{+})	1053.8 4	100	5530.0+x	(23^{+})		
7533.1+x	(26^{+})	1069.4 [#] 4	100	6463.7+x	(24^{+})		
7751.6+x	(27^{+})	1167.8 4	100	6583.8+x	(25 ⁺)		
9016.3+x	(29 ⁺)	1264.7 [#] 4	100	7751.6+x	(27 ⁺)		
10381.4+x	(31^{+})	1365.1 [#] 4	100	9016.3+x	(29^{+})		

 $\gamma(^{116}Cs)$

[†] From γ -ray angular distribution data in ⁵⁸Ni(⁶⁴Zn,2pn γ). The mult=E2 corresponds to ΔJ =2 and M1+E2 to ΔJ =1 transitions.

Adopted Levels, Gammas (continued)

 γ ⁽¹¹⁶Cs) (continued)

[‡] Multiply placed with undivided intensity.
[#] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given γ Decay (Uncertain) _ _ - ► 001 13021 + (31^{+}) 10381.4+x + 1204,7 100 (29+) 9016.3+x + 1165.8 100 001 F:0001 (27^{+}) 7751.6+x (26^{+}) 7533.1+x † 105_{3.8} 100 1 %:>10 (25⁺) 6583.8+x (24^+) + 386.7 ES 100 + 6463.7+x + 985 + 1885 + 1895 (23+) 5530.0+x (22^+) + 242,3 E2 100 + 5480.0+x + ¹018,2 100 | 4543.3+x (21^{+}) (20+) + 873,1 22 100 | 4481.5+x + 25.5 22 100 -(19+) 3601.0+x + 245 E2 100 | (18^+) 3462.8+x + 8¦, 0 €2 100 | + 189 38 $\left| \frac{1}{26} \frac{6_{3_4} s}{226} \frac{s_{2_2}}{m_{1_4} \frac{1}{20}} \right|_{00}$ (17^{+}) 2727.9+x (16⁺) + 620 E2 100 2537.3+x TS2 (15⁺) 1953.4+x 1 42.8 1 24. 1 24. 41'455100 + **|-+ **; - *: - *: - *: - *: - *: (14^{+}) 1726.3+x (13^{+}) 1318.6+x 243 243 $\frac{(12^+)}{(12^+)}$ 1076.3+x 8 875.8+x 243 6 (10^{+}) 633.1+x 8 CF. 6 457+x Ś (8+) 416.9+x õ 191.8+x 0+x (1^+) 0 0.70 s 4

¹¹⁶₅₅Cs₆₁

Adopted Levels, Gammas

¹¹⁶₅₅Cs₆₁