	⁵⁸ Ni(⁶⁴	Zn,αpnγ)	2006Sm04	
		History		
Туре	Author	Cit	ation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 111,	717 (2010)	1-Dec-2009

E=265 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$ using Gammasphere spectrometer, consisting of 101 (75% efficient) Comptonsuppressed Ge detectors. These detectors were arranged in 16 rings, having a constant polar angle θ with respect to the beam axis. Charged particles were detected with the Microball detector array consisting of 95 CsI(I(γ +ce)) scintillators. Reaction products separated with the fragment mass analyzer (FMA).

¹¹⁶Cs Levels

E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡
0+x		$1076.3 + x^{\#} 2$	(12^{+})	3462.8+x [#] 5	(18^{+})	6463.7+x [#] 7	(24^{+})
191.8+x <i>1</i>		1318.6+x [@] 6	(13+)	3601.0+x [@] 7	(19+)	6583.8+x [@] 8	(25 ⁺)
416.9+x [#] 2	(8 ⁺)	1726.3+x [#] 2	(14^{+})	4481.5+x [#] 6	(20^{+})	7533.1+x [#] 8	(26 ⁺)
457+x		1953.4+x [@] 7	(15^{+})	4543.3+x [@] 7	(21^{+})	7751.6+x [@] 9	(27^{+})
633.1+x [#] 2	(10^{+})	2537.3+x [#] 3	(16 ⁺)	5480.0+x [#] 6	(22^{+})	9016.3+x [@] 10	(29 ⁺)
875.8+x [@] 7	(11^{+})	2727.9+x [@] 7	(17^{+})	5530.0+x [@] 7	(23 ⁺)	10381.4+x [@] 11	(31 ⁺)

[†] From least-squares fit to $E\gamma's$.

[‡] As proposed by 2006Sm04 based on angular distribution data, long cascades of stretched quadrupole transitions and systematics of neighboring Cs nuclides.

[#] Band(A): $\nu h_{11/2} \otimes \pi h_{11/2}$, $\alpha = 0$.

[@] Band(a): $\nu h_{11/2} \otimes \pi h_{11/2}$, $\alpha = 1$.

$\gamma(^{116}Cs)$

Angular intensity ratio (R) taken from γ ray intensities at $\theta \approx 90^{\circ}$ (28 detectors at $\theta = 79.2^{\circ}$, 80.7°, 90.0°, 99.3°, and 100.8°) and $\theta \approx 40^{\circ}$ (38 detectors at $\theta = 31.7^{\circ}$, 37.4°, 50.1°, 129.9°, 142.6°, and 148.3°). This ratio is ≈ 1.3 for $\Delta J = 2$, stretched quadrupole and ≈ 0.8 for $\Delta J = 1$, stretched dipole.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [#]	Comments
176 ^{&} 1	5 1	633.1+x	(10 ⁺)	457+x		R=1.82 14.
189 ^{&} 1	8 1	2727.9+x	(17^{+})	2537.3+x (16 ⁺)		
191.8 <i>1</i>	100 5	191.8+x		0+x		Mult.: stretched Q suggested by R=1.27 4.
216.2 1	64 <i>3</i>	633.1+x	(10^{+})	416.9+x (8 ⁺)	E2	R=1.19 4.
225.1 I	79 <i>4</i>	416.9+x	(8^+)	191.8+x		Mult.: stretched Q or unstretched mixed D+Q.
						R=1.59 6.
226 1	10 2	1953.4+x	(15^{+})	1726.3+x (14 ⁺)	M1+E2	R=0.72 8.
243 [@] 1	32 [@] 4	875.8+x	(11^{+})	633.1+x (10 ⁺)	M1+E2	R=0.77 2 for doublet.
243 [@] 1	32 [@] 4	1318.6+x	(13 ⁺)	1076.3+x (12 ⁺)	M1+E2	R=0.77 2 for doublet.
442 ^{&} 1	10 3	633.1+x	(10^{+})	191.8+x		
442.8 1	56 [‡] 6	1318.6+x	(13 ⁺)	875.8+x (11 ⁺)	E2	R=1.42 5 for 443.2+442.8.
443.2 1	56 [‡] 6	1076.3+x	(12^{+})	633.1+x (10 ⁺)	E2	R=1.42 5 for 443.2+442.8.
634.8 1	24 2	1953.4+x	(15^{+})	1318.6+x (13 ⁺)	E2	R=1.37 5.
650.0 1	20 2	1726.3+x	(14^{+})	1076.3+x (12 ⁺)	E2	R=1.24 5.
774.5 1	21 2	2727.9+x	(17^{+})	1953.4+x (15 ⁺)	E2	R=1.40 5.
811.0 2	11 <i>I</i>	2537.3+x	(16^{+})	1726.3+x (14 ⁺)	E2	R=1.60 7.
873.1 <i>1</i>	21 2	3601.0+x	(19 ⁺)	2727.9+x (17 ⁺)	E2	R=1.45 <i>6</i> .

Continued on next page (footnotes at end of table)

$\frac{58 \text{Ni}(^{64}\text{Zn},\alpha \text{pn}\gamma)}{2006 \text{Sm04}} \text{ (continued)}$									
γ ⁽¹¹⁶ Cs) (continued)									
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]		Comments	
925.5 4	91	3462.8+x	(18^{+})	2537.3+x	(16^{+})	E2	R=1.31 <i>6</i> .		
942.3 1	20 2	4543.3+x	(21^{+})	3601.0+x	(19+)	E2	R=1.30 5.		
983.7 4	61	6463.7+x	(24^{+})	5480.0+x	(22^{+})				
986.7 <i>2</i>	13 <i>I</i>	5530.0+x	(23^{+})	4543.3+x	(21^{+})	E2	R=1.33 6.		
998.5 <i>2</i>	10 3	5480.0+x	(22^{+})	4481.5+x	(20^{+})	E2	R=1.46 8.		
1018.7 2	10 3	4481.5+x	(20^{+})	3462.8+x	(18^{+})	E2	R=1.65 10.		
1053.8 4	8 <i>3</i>	6583.8+x	(25^{+})	5530.0+x	(23^{+})				
1069.4 ^{&} 4	2 1	7533.1+x	(26^{+})	6463.7+x	(24^{+})				
1167.8 4	52	7751.6+x	(27^{+})	6583.8+x	(25^+)				
1264.7 <mark>&</mark> 4	3 1	9016.3+x	(29 ⁺)	7751.6+x	(27 ⁺)				
1365.1 ^{&} 4	3 1	10381.4+x	(31^{+})	9016.3+x	(29^{+})				

[†] Uncertainties assigned as 0.1 for $I\gamma \ge 20$, 0.2 for $I\gamma = 10$ -19, 0.4 for $I\gamma < 10$ and 1 keV when $E\gamma$ stated to nearest keV, based on a general comment by 2006Sm04 that uncertainties are 0.1-0.4 keV.

[‡] Combined for 442.8+443.2.

[#] 2006Sm04 assigned E2 to all the $\Delta J=2$ transitions and M1/E2 to $\Delta J=1$ transitions, except 176 γ , 216.2 γ and 442 γ . The evaluator has assigned the multipolarities for those transitions where R_{ang} data are available. Since the angular distribution data are parity insensitive, mult=E2 is assigned to $\Delta J=2$, quadrupole transitions and M1+E2 to $\Delta J=1$ transitions.

[@] Multiply placed with undivided intensity.

& Placement of transition in the level scheme is uncertain.

 $^{116}_{55}Cs_{61}$

⁵⁸Ni(⁶⁴Zn,αpnγ) 2006Sm04

¹¹⁶₅₅Cs₆₁