$^{116}\mathrm{Ag}\,\beta^-$ decay (9.3 s)

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009					

Parent: ¹¹⁶Ag: E=128.8 *l*; J^{π} =(6⁻); $T_{1/2}$ =9.3 s *l*; Q(β^{-})=6176 *4*; % β^{-} decay=92 4

¹¹⁶Ag-E,J^{π},T_{1/2}: From 2005Ba94. This isomer decays $\approx 8.4 \%$ by an isomeric E3 transition of 80.9 keV to 47.9, (3⁺) level of ¹¹⁶Ag. Likely configuration= $\pi 5/2[422] \otimes v7/2[523]$ or $\pi 3/2[431] \otimes v9/2[514]$.

¹¹⁶Ag-Q(β^{-}): From 2009AuZZ.

¹¹⁶Ag- $\%\beta^-$ decay: %IT=8 4 from 2005Ba94.

2009Ba52: ¹¹⁶Ag activity was produced by the 40-MeV protons bombarding a ²³⁸UC_x target installed at the On-Line Test Facility (oltf) at the Holifield Radioactive Ion Beam Facility (hribf). Fission products was separated and deposited on a moving tape collector (mtc).

First measurements : 1973FoZF,1974Bj01,1975BrYN.

Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, conversion electron- γ with the (cards) detector array, composed of the three segmented-clover Ge detectors, plastic scintillators and a high-resolution Si conversion-electron spectrometer (besca).

Transitions arising from the respective short-lived isomers were separated by their half-lives.

The γ - γ and conversion electron- γ coincidences were used to construct the decay scheme in ¹¹⁶Cd after the β decay of 9.8-s isomer of ¹¹⁶Ag.

¹¹⁶Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0^{+}	
513.50 8	2+	
1213.11 8	2^{+}	
1219.50 10	4+	
1642.61 10	2^{+}	
1869.82 13	4+	
1916.04 11	3+	
1921.70 11	3-	
2026.72 12	6+	
2042.29 12	4+	
2249.11 11	5-	
2303.00 22		
2340.12 12	(4^{-})	J^{π} : 4 ⁻ from Fig.5 and Table ii (2009Ba52).
2493.71 22		
2504.04 13	(5^{-})	J^{π} : 5 ⁻ in Fig.5 and Table ii (2009Ba52).
2565.0 <i>3</i>	· /	
2691.16 14	(5^{-})	
2693.23 14	(7-)	
2699.30 23	(5-)	
2828.91 23	(6 ⁻)	
2865.70 16	(5-)	
2877.74 16	(6 ⁻)	
2920.5 10		E(level): from Fig.7 and listed in Table iv ($^{116}Ag^{m1,m2}$) not in Table ii ($^{116}Ag^{m2}$ (2009Ba52).
2958.63 14	(6 ⁻)	
3013.55 14	$(5^{-}, 6^{-})$	
3088.00 13	(7^{-})	
3130.36 25	· /	
3162.52 23		
3212.72 23		
3213.70 22	(6^{+})	
3360.11 17		
3372.0 <i>3</i>		
3373.3 5		
3388.0 <i>3</i>		

$^{116}\mathrm{Ag}\,\beta^-$ decay (9.3 s) (continued)

¹¹⁶Cd Levels (continued)

E(level)[†]

Comments

3486.22 24	E(level): 3468.1 listed in Table ii of 2009Ba52 is a misprint.
3549.75 24	-
3632.7 5	
3665.02 23	

[†] From least-squares fit to $E\gamma$'s.

[‡] From Table iv (2009Ba52).

 β^- radiations

E(decay)	E(level)	Ιβ ^{-‡}	$\log ft^{\dagger}$	Comments
(2640 4)	3665.02	0.65 9	6.26 6	av $E\beta = 1081.2$ 19
(2672 4)	3632.7	0.23 8	6.73 16	av $E\beta = 1096.2$ 19
(2755 4)	3549.75	1.2 3	6.07 11	av E β =1134.8 19
(2819 4)	3486.22	0.5 1	6.49 9	av E β =1164.5 19
(2917 4)	3388.0	0.24 5	6.87 9	av E β =1210.4 19
(2931 4)	3373.3	0.4 2	6.66 22	av $E\beta = 1217.3 \ 19$
(2933 4)	3372.0	0.28 7	6.82 11	av E β =1217.9 19
(2945 4)	3360.11	4.2 2	5.647 22	av $E\beta = 1223.5 \ 19$
(3091 4)	3213.70	4.6 5	5.70 5	av $E\beta = 1292.1 \ 19$
(3092 4)	3212.72	0.40 9	6.76 10	av $E\beta = 1292.6 \ 19$
(3142 4)	3162.52	0.25 6	6.99 11	av $E\beta = 1316.1 \ I9$
(3174 4)	3130.36	0.4 1	6.81 11	av E β =1331.2 19
(3217 4)	3088.00	8.6 7	5.50 4	av E β =1351.1 19
(3291 4)	3013.55	6.3 7	5.68 5	av E β =1386.2 <i>19</i>
(3346 4)	2958.63	25 1	5.108 18	av E β =1412.0 19
(3384 4)	2920.5	0.17 5	7.3 2	av E β =1430.0 20
				$I\beta^-$: from Table iv (2009Ba52).
(3427 4)	2877.74	3.9 <i>3</i>	5.96 4	av E β =1450.1 19
(3439 4)	2865.70	0.8 <i>3</i>	6.65 17	av E β =1455.8 19
(3476 4)	2828.91	1.1 7	6.5 <i>3</i>	av E β =1473.2 19
(3605 4)	2699.30	1.7 4	6.41 11	av E β =1534.4 19
(3612 4)	2693.23	10 5	5.65 22	av E β =1537.2 19
(3614 4)	2691.16	2.5 5	6.25 9	av E β =1538.2 19
(3740 4)	2565.0	0.13 3	7.60 10	av E β =1597.8 19
(3801 4)	2504.04	5.9 9	5.97 7	av E β =1626.7 19
(3811 4)	2493.71	0.17 7	7.52 18	av E β =1631.6 <i>19</i>
(3965 [#] 4)	2340.12	0.3 2	7.3 3	av E β =1704.3 19
				Log ft: 8.9 3 from Table iv of 2009Ba52, assuming first-forbidden unique transition.
				Compilers note that 6^- to 4^- is not a transition of this nature. log $ft=7.3$ is too low
				to be realistic for a $\Delta J = {}^{2}$, No β transition.
(4002 4)	2303.00	0.81 6	6.93 4	av E β =1721.9 <i>19</i>
(4056 4)	2249.11	159	5.7 3	av E β =1747.4 19
(4263 4)	2042.29	1.4 1	8.5^{1u} 1	av $E\beta = 1845.5 \ 19$
(4435 4)	1869.82	3.9 6	8.1 ¹ <i>u</i> 1	av E β =1927.4 <i>19</i>

[†] The values are nearly the same as in Table iv of 2009Ba52, unless otherwise stated. 2009Ba52 state that log *ft* values should be considered as lower limits, especially, for weak β feedings, due to "pandemonium" effect.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

¹¹⁶Ag β^- decay (9.3 s) (continued)

$\gamma(^{116}\text{Cd})$

Unplaced γ rays are from the decay of 20-s or the 9.8-s isomer.

Eγ	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
93.0 2	0.03 1	2958.63	(6 ⁻)	2865.70	(5^{-})	M1	$\alpha(K) \exp = 8 \times 10^{-1} \ 3$
129.3 <i>3</i>	0.16 2	3088.00	(7-)	2958.63	(6 ⁻)	M1	$\alpha(K) \exp = 1.5 \times 10^{-1} 7$
135.6 2	0.05 [#] 2	3013.55	$(5^{-}, 6^{-})$	2877.74	(6 ⁻)	M1	$\alpha(K) \exp = 1.2 \times 10^{-1} 3$
147.7 2	0.012 3	3013.55	(5 ⁻ ,6 ⁻)	2865.70	(5 ⁻)	M1,E2	$\alpha(K) \exp = 2.3 \times 10^{-1} 9$
^x 152.8 3	0.06 1						
186.6 4	0.12 2	2877.74	(6 ⁻)	2691.16	(5 ⁻)	M1	$\alpha(\mathbf{K}) \exp = 8 \times 10^{-2} \ 2$
×198.7 3	0.21 4						
204.2.5	0.14 3	3088.00	(7^{-})	2877 74	(6^{-})	M1	$\alpha(K) \exp(-5 \times 10^{-2})$
210.0 5	0.175	3360.11	(r)	2077.74	(0)	1011	$\alpha(K)\exp{-4\times10^{-2}}$
229.0 3	232	2504.04	(5^{-})	2249 11	5-	M1 F2	$\alpha(K)\exp(-4\times 10^{-1})$ $\alpha(K)\exp(-3.5\times 10^{-2})$ 5
259.3.2	0.20.8	2958.63	(6^{-})	2699.30	(5^{-})	1111,122	$\alpha(K)\exp[-3.5\times10^{-5}]$
265.4 1	2.0 1	2958.63	(6^{-})	2693.23	(7^{-})	M1	$\alpha(\mathbf{K})\exp[3.1\times10^{-2}]3$
^x 315.1 3	0.11 2						
320.2 2	0.50 5	3013.55	(5 ⁻ ,6 ⁻)	2693.23	(7 ⁻)	M1,E2	α (K)exp=1.9×10 ⁻² 3
327.6 <i>3</i>	0.08 2	2249.11	5-	1921.70	3-		α (K)exp=2.4×10 ⁻² 12
351.2 2	0.09 [#] 1	2691.16	(5 ⁻)	2340.12	(4 ⁻)	M1	α (K)exp=1.5×10 ⁻² 3
373.6 4	0.09 [#] 1	2877.74	(6 ⁻)	2504.04	(5 ⁻)		
^x 374.3 3	0.04 3						2
379.4 2	0.6 1	2249.11	5-	1869.82	4+	E1	$\alpha(K) \exp = 4 \times 10^{-5} I$
394.6 2	0.56.5	3088.00	(7)	2693.23	(/)	M1,E2	$\alpha(\mathbf{K})\exp[1.1\times10^{-2}]$
399.5 4	0.06^{+} I	2042.29	4+	1642.61	2+		
418.3 3	0.06^{+} 1	2340.12	(4^{-})	1921.70	3-		
423.1 2	0.002 1 0.32 3	1042.01 2340.12	(A^{-})	1219.30	4 3+		$\alpha(K) \exp(-7 \times 10^{-3})$
442 0 1	0.325	2540.12	()	2240.11	5-		$u(\mathbf{K})cxp = 7 \times 10^{-5}$
442.01	$0.23 \ 3$	2091.10	(3) (7^{-})	2249.11	5		
445.85	$1.6 \ 3$	2095.25	(7) (5^{-})	2249.11	5-	M1 E2	$\alpha(K) \exp(-7 \times 10^{-3})^2$
454.1.3	0.41	2099.30	(5^{-})	2249.11	(5^{-})	1011,122	$\alpha(K)\exp(-7\times10^{-3} 2)$
4J4.1 J	24^{\pm} 2	2930.03 513.50	(0) 2+	2304.04	(3)	E2	$\alpha(K)\exp(-5.10 - 2)$
515.5 1	24 2	515.50	2	0.0	0	62	α (K)exp=3.5(10 ° <i>I</i>) α (K)exp: Uncertainty of 0.00001 in Table I of 2009Ba52 seems unrealistic, the compilers have increased the uncertainty by a factor of 10.
522.5 5	0.62 [#] 7	3213.70	(6^{+})	2691.16	(5 ⁻)	E1	$\alpha(K)\exp=2.1\times10^{-3}$ 7
537.6 6	0.29 [#] 3	2877.74	(6 ⁻)	2340.12	(4 ⁻)		
538.3 <i>3</i>	0.035 [#] 7	2565.0		2026.72	6+		
^x 552.1 3	0.03 1						
559.1 2	0.06 1	3388.0		2828.91	(6 ⁻)		2 -
579.8 2	0.3 2	2828.91	(6 ⁻)	2249.11	5-	50	$\alpha(K) \exp = 4 \times 10^{-5} 2$
585.9 Z	0.86 8	3088.00	(/)	2504.04	(5)	E2	$\alpha(\mathbf{K})\exp=3.8\times10^{-5}$ 8
628.6.2	0.09 1	2936.03 2877 74	(0^{-})	2340.12	(4) 5 ⁻		$\alpha(K) \exp{-3\times 10^{-3}}$ l
634.0 2	0.78 7	2504.04	(5 ⁻)	1869.82	4 ⁺		u(1) or
650.2 2	0.69 5	1869.82	4+	1219.50	4+	M1,E2	$\alpha(K)\exp=3.3\times10^{-3}$ 9
656.7 2	1.5 1	1869.82	4+	1213.11	2^{+}	M1,E2	$\alpha(K)\exp=2.9\times10^{-3} 5$
664.6 <i>3</i>	1.3 [#] 3	2691.16	(5 ⁻)	2026.72	6+		
666.4 2	3.8 [#] 6	2693.23	(7-)	2026.72	6+		
667.1 5	0.20 [#] 7	3360.11		2693.23	(7 ⁻)		

Continued on next page (footnotes at end of table)

$^{116}\mathrm{Ag}\,\beta^{-}$ decay (9.3 s) (continued)

γ ⁽¹¹⁶Cd) (continued)</sup>

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.		Comments
669.0 <i>5</i> 673.5 <i>2</i> ^x 689.0 <i>3</i>	0.3 [#] 1 0.6 1 0.05 1	3360.11 3013.55	(5-,6-)	2691.16 2340.12	(5 ⁻) (4 ⁻)			
696.5 2	0.10 [#] 1	1916.04	3+	1219.50	4+			
699.6 <i>2</i>	1.4 1	1213.11	2*	513.50	2*	M1,E2	α (K)exp=2.4×10 ⁻⁵ 4	
702.9 3	0.24# 5	1916.04	3+	1213.11	2+			
706.0 1	22.2	1219.50	4 ⁺ 2 ⁻	513.50	2+ 2+	E2	$\alpha(K) \exp = 2.2 \times 10^{-5} 2$	
/08.6 2	0.05 2	1921.70	3	1213.11	2'			
709.7 5	2.6" 5	2958.63	(6 ⁻)	2249.11	5-			
× 138.13	0.02 I							
754.0 5	0.072	2012 55	(5 - (-))	2240 11	5-			
/04./2 x784.8.3	0.27^{-3}	3013.33	(5,6)	2249.11	3			
807.1.1	656	2026 72	6+	1219 50	\mathcal{A}^+	F2	$\alpha(K) = 1.6 \times 10^{-3} I$	
82261	$0.06^{\#}$ 1	2020.72	0 4 ⁺	1210.50	т 4+	1.2	u(IK)exp=1.0×10 1	
822.04	0.00 I 0.32 3	3088.00	(7^{-})	2249.11	4 5-			
^x 862.4 5	0.2 1	2000.00	(,)	2219.11	5			
x873.9 3	0.07 1							
881.1 <i>3</i>	0.12 2	3130.36		2249.11	5-			
^x 896.5 3	0.14 7							
^x 930.0 3	0.014 10	2050 (2		2026 72				
952.1 Z	0.8 I	2958.63	(6)	2026.72	6'			
955.0 5	0.032	3213 70	(6^{+})	2249 11	5-			
x977.3 3	0.03 1	5215.70	(0)	2217.11	5			
987.0 2	0.14 2	3013.55	(5 ⁻ ,6 ⁻)	2026.72	6+			
1029.7 <i>1</i>	13 2	2249.11	5-	1219.50	4+	E1	α (K)exp=3.6×10 ⁻⁴ 9	
1045.7 2	0.29 7	3549.75		2504.04	(5 ⁻)			
1061.1 <i>1</i>	0.13 1	3088.00	(7 ⁻)	2026.72	6+			
1083.5 2	0.20# 2	2303.00		1219.50	4 ⁺			
1111.12	0.45 6	3360.11	(A^{-})	2249.11	5 ⁻			
1120.7 1	0.770	2340.12	(4)	1219.30	4 5-			
1124.2 J 1120 1 J	0.11^{-5}	3373.3 1642.61	2^+	513 50	3 2+			
1129.17	0.05 1	3162.52	2	2026 72	6^{+}			
x1180.6 4	0.03 1	5102.52		2020.72	0			
1186.0 2	0.10 2	3212.72		2026.72	6+			
1213.1 <i>1</i>	0.70 5	1213.11	2+	0.0	0^{+}			
1237.1 <i>3</i>	0.05 1	3486.22		2249.11	5-			
x1250.5 4	0.03 I							
1209.5 5	0.0149	2402 71		1010 50	4+			
12/4.2 2	0.04^{-1}	2495.71	(5^{-})	1219.50	4 · 1+			
1333.3.2	0.11 1	3360.11	(5)	2026.72	$\frac{1}{6^+}$			
1345 3 3	0.07^{\ddagger} 1	3372.0		2026.72	6 ⁺			
1356.4 3	0.23 2	1869.82	4+	513.50	2^{+}			
1402.5 1	0.33 2	1916.04	3+	513.50	2+			
1408.2 1	0.16 3	1921.70	3-	513.50	2^{+}			
1415.9 2	0.16 [#] 2	3665.02		2249.11	5-			
^x 1422.2 5	0.02 1							
1459.5 <i>3</i>	0.08 [#] 1	3486.22		2026.72	6+			
x1517.2 3	0.13 3	20.42.20	4		2+			
1528.8 <i>I</i>	0.23 3	2042.29	4'	513.50	21			

Continued on next page (footnotes at end of table)

$^{116}\mathrm{Ag}\,\beta^-$ decay (9.3 s) (continued)

$\gamma(^{116}$ Cd) (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments	
^x 1549.5 5	0.03 1				_		
1606.0 5	0.06 [#] 2	3632.7		2026.72	6+		
^x 1630.9 5	0.008 6						
1642.6 2	0.03 1	1642.61	2+	0.0	0^{+}		
1646.1 2	0.24 2	2865.70	(5 ⁻)	1219.50	4^{+}		
^x 1676.8 4	0.04 1						
1701.0		2920.5		1219.50	4^{+}	E_{γ} : from Fig.7 (2009Ba52).	
^x 1858.2 4	0.04 1						
^x 1918.0 5	0.02 1						
^x 1922.4 5	0.03 1						
^x 2012.8 5	0.04 1						

[†] From singles γ and γγ coin spectra, unless otherwise stated.
[‡] From singles γ spectra.
[#] From γγ coin spectra.
[@] For absolute intensity per 100 decays, multiply by ≈4.1.
^x γ ray not placed in level scheme.

$^{116}\mathrm{Ag}\,\beta^-$ decay (9.3 s)

Decay Scheme

$\frac{116}{\text{Ag}\,\beta^{-}\,\text{decay}\,(9.3\,\text{s})}$

Decay Scheme (continued)

$^{116}\mathrm{Ag}\,\beta^-$ decay (9.3 s)

Decay Scheme (continued)

8