History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009					

Parent: ¹¹⁶Ag: E=0; $J^{\pi}=(0^{-})$; $T_{1/2}=237$ s 5; $Q(\beta^{-})=6176$ 4; % β^{-} decay=100.0

¹¹⁶Ag-J^{π}: From 2005Ba94. Likely configuration= $\pi 1/2[301] \otimes v 1/2[420]$.

¹¹⁶Ag-T_{1/2}: From 2009Ba52. Other: 230 s 5 (2005Ba94).

¹¹⁶Ag-Q(β^{-}): From 2009AuZZ.

2009Ba52: ¹¹⁶Ag activity was produced by the 40-MeV protons bombarding a $^{238}UC_x$ target installed at the On-Line Test Facility (oltf) at the Holifield Radioactive Ion Beam Facility (hribf). Fission products was separated and deposited on a moving tape collector (mtc).

Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce, ce γ coin with the (cards) detector array, composed of the three segmented-clover Ge detectors, plastic scintillators and a high-resolution Si conversion-electron spectrometer (besca).

The $\gamma\gamma$ and ce- γ coincidences were used to construct the decay scheme in ¹¹⁶Cd from the β decay of ¹¹⁶Ag g.s.

All data are from 2009Ba52, unless otherwise stated.

The older data with $T_{1/2}=2.68$ min were from 1979BrZT, 1974Bj01, 1973FoZF.

¹¹⁶Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0 513.50 5 1213.09 6	0^+ 2^+ 2^+ 4^+	stable	
$\begin{array}{c} 1219.50^{\circ \circ} \ 9 \\ 1282.60 \ 12 \\ 1380.36 \ 18 \\ 1642.65 \ 8 \\ 1915.94^{\#} \ 10 \\ \end{array}$	$ \begin{array}{c} 4^{+} \\ 0^{+} \\ 0^{+} \\ 2^{+} \\ 3^{+} \\ \end{array} $	65 ps 4	From 1989Ma33.
1921.72" 7 1928.61 21 1951.40 7 2118.42 21 2294 97 15	3^{-} 0^{+} 2^{+} 2^{+}		
2392.04 9	3-		J^{π} : from text and tables vi and vii. Other: (2 ⁺) in figure 5. log <i>ft</i> =8.5 from (0 ⁻) is too low to be realistic for $\Lambda I=3.6$ transition.
2435.32 <i>12</i> 2478.22 8 2518.35 9 2572.44 [#] <i>15</i> 2653.52 <i>21</i>	2^+ 1^- 2^-		
2720.33 12			J ^{π} : 2009Ba52 propose 2 ⁺ ,3,4 ⁺ based on γ 's to 2 ⁺ and 4 ⁺ , which disagrees with 1 ⁻ assignment in Adopted Levels, but log <i>ft</i> =8.1 from (0 ⁻) does not allow 3,4 ⁺ .
2760.31 <i>13</i> 2784.11 <i>14</i> 2802.77 <i>10</i> 2829.06 <i>19</i>	1		
2844.10 11 2845.71 21 2862.64 11 2978.28 22 3001.44 10 3015.19 13 3068.94 20			
3119.12 22	1-		

$^{116}\mathrm{Ag}\,\beta^-$ decay (237 s) 2009Ba52,2005Ba94 (continued)

¹¹⁶Cd Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
3137.64 21	3527.99 19	3877.87 20	4539.20 20
3175.64 10	3531.56 20	3925.1 <i>3</i>	4562.06 21
3213.08 13	3542.92 21	3943.07 20	4573.91 23
3216.74 11	3560.85 22	3984.7 <i>3</i>	4590.80 20
3217.47 18	3595.5 <i>3</i>	4009.7 <i>3</i>	4614.86 15
3218.51 21	3601.36 20	4022.97 20	4632.0 <i>3</i>
3250.65 20	3674.75 17	4057.88 20	4642.71 15
3275.80 18	3681.86 20	4080.3 <i>3</i>	4647.4 <i>3</i>
3287.24 21	3708.39 17	4083.63 19	4652.95 21
3307.2 <i>3</i>	3732.35 11	4135.86 21	4689.30 19
3339.95 20	3745.96 18	4177.2 <i>3</i>	4697.65 21
3348.56 9	3747.25 21	4231.48 20	4755.25 21
3378.23 16	3758.72 21	4247.0 3	4773.0 <i>3</i>
3379.4 <i>3</i>	3794.44 21	4290.19 20	4787.19 <i>21</i>
3434.41 14	3795.2 [@] 3	4378.47 21	4828.89 21
3435.74 17	3805.97 20	4428.29 20	4916.6 <i>3</i>
3471.4 <i>3</i>	3839.34 21	4432.07 21	4924.6 <i>3</i>
3473.00 10	3841.6 <i>3</i>	4449.5 <i>3</i>	4953.6 <i>3</i>
3511.86 20	3850.7 <i>3</i>	4475.95 17	4968.90 21

[†] From least-squares fit to $E\gamma'$ s. [‡] From Tables vi, vii and viii of 2009Ba52. [#] No evidence of β feeding to this level. [@] 3975.1 listed in Table vi of 2009Ba52 is a misprint.

 β^{-} radiations

No evidence of β feeding to 1219, 1916, 1922 and 2572 levels.

E(decay)	E(level)	$I\beta^{-\ddagger}$	$\log ft^{\dagger}$	Comments
$(1207 \ 4)$	4968.90	0.06 2	7.31 15	av E <i>β</i> =435.6 <i>17</i>
(1222 4)	4953.6	0.04 1	7.50 11	av $E\beta = 442.1 \ I8$
(1251 4)	4924.6	0.03 1	7.67 15	av $E\beta = 454.5 \ 18$
(1259 4)	4916.6	0.015 6	7.98 18	av $E\beta = 458.0 \ 18$
(1347 4)	4828.89	0.05 2	7.57 18	av $E\beta = 495.8 \ 18$
(1389 4)	4787.19	0.024 9	7.94 17	av E β =513.9 <i>18</i>
(1403 4)	4773.0	0.016 6	8.13 17	av E β =520.1 18
(1421 4)	4755.25	0.11 3	7.32 12	av E β =527.8 18
(1478 4)	4697.65	0.10 3	7.42 13	av E β =553.0 18
(1487 4)	4689.30	0.26 7	7.02 12	av E β =556.7 18
(1523 4)	4652.95	0.12 3	7.40 11	av E β =572.7 18
(1529 4)	4647.4	0.026 8	8.07 14	av E β =575.1 18
(1533 4)	4642.71	0.14 3	7.34 10	av E β =577.2 18
(1544 4)	4632.0	0.02 1	8.20 22	av E β =581.9 <i>18</i>
(1561 4)	4614.86	0.7 1	6.67 7	av E β =589.5 18
(1585 4)	4590.80	0.07 1	7.70 7	av E β =600.1 18
(1602 4)	4573.91	0.29 5	7.10 8	av E β =607.6 18
(1614 4)	4562.06	0.17 4	7.34 11	av Eβ=612.9 <i>18</i>
(1637 4)	4539.20	0.020 6	8.30 13	av E β =623.0 18
(1700 4)	4475.95	0.15 2	7.49 6	av Eβ=651.2 18

Continued on next page (footnotes at end of table)

From ENSDF

¹¹⁶Ag β⁻ decay (237 s) 2009Ba52,2005Ba94 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\ddagger}$	$\log ft^{\dagger}$		Comments
(1727 4)	4449.5	0.021 6	8.37 13	av E β =663.1 18	
$(1744 \ 4)$	4432.07	0.06 1	7.93 8	av E β =670.9 18	
(1748 4)	4428.29	0.07 1	7.87 7	av E β =672.6 18	
(1798 4)	4378.47	0.08 2	7.86 11	av E β =694.9 18	
(1886 4)	4290.19	0.02 1	8.54 22	av E β =734.8 19	
(1929 4)	4247.0	0.15 3	7.71 9	av E β =754.3 19	
(1945 4)	4231.48	0.027 6	8.47 10	av E β =761.3 19	
(1999 4)	4177.2	0.03 1	8.47 15	av E β =786.0 19	
(2040 4)	4135.86	0.13 2	7.87 7	av $E\beta = 804.8 \ 19$	
(2092 4)	4083.63	0.35 3	7.48 4	av $E\beta = 828.6 \ 19$	
(2096 4)	4080.3	0.3 1	7.55 15	av Eβ=830.1 19	
(2118 4)	4057.88	0.02 1	8.75 22	av Eβ=840.4 19	
(2153 4)	4022.97	0.06 1	8.30 8	av E β =856.4 19	
(2166 4)	4009.7	0.05 1	8.39 9	av Eβ=862.4 19	
(2191 4)	3984.7	0.13 3	7.99 10	av Eβ=873.9 <i>19</i>	
(2233 4)	3943.07	0.03 1	8.66 15	av Eβ=893.0 19	
(2251 4)	3925.1	0.03 1	8.68 15	av Eβ=901.3 19	
(2298 4)	3877.87	0.03 1	8.71 15	av Eβ=923.0 <i>19</i>	
(2325 4)	3850.7	0.09 3	8.26 15	av Eβ=935.5 19	
(2334 4)	3841.6	0.10 3	8.22 13	av Eβ=939.7 <i>19</i>	
(2337 4)	3839.34	0.16 2	8.02 6	av Eβ=940.7 <i>19</i>	
(2370 4)	3805.97	0.03 1	8.77 15	av E β =956.1 <i>19</i>	
(2381 4)	3795.2	0.03 1	8.78 15	av Eβ=961.1 <i>19</i>	
(2382 4)	3794.44	0.37 4	7.69 5	av $E\beta = 961.5 \ 19$	
(2417 4)	3758.72	0.14 3	8.14 10	av E β =978.0 <i>19</i>	
(2429 4)	3747.25	0.17 5	8.06 13	av $E\beta = 983.3 \ 19$	
(2430 4)	3745.96	0.22 4	7.95 8	av E β =983.9 <i>1</i> 9	
(2444 4)	3732.35	0.2 1	8.00 22	av E β =990.2 <i>1</i> 9	
(2468 4)	3708.39	0.25 6	7.92 11	av $E\beta = 1001.3 \ I9$	
(2494 4)	3681.86	0.03 1	8.86 15	av $E\beta = 1013.5 \ I9$	
(2501 4)	36/4./5	0.13 1	8.23 4	av $E\beta = 1016.8 \ I9$	
(25754)	3601.36	0.15 5	8.22 13	$av E\beta = 1050.9 I9$	
(2581 4)	3393.3	0.05 1	8.709	av $E\beta = 1053.6 I9$	
(2013 4)	3500.85	0.07 2	0.30 13	av $E_{P}=1009.779$	
(2033 4) (2644 4)	3542.92	0.33 3	1.09 /	$av E \beta = 1076.0 19$ $av E \beta = 1083 3 10$	
(2644 4)	3527.00	0.04 2	8 17 12	$av E \beta = 1085.5 T \beta$	
(2644 4)	3511.86	0.19.5	8769	$av E \beta = 1005.0 T \beta$ av E $\beta = 1002.5 T \beta$	
(2703 4)	3473.00	383	6 90 4	av $E\beta = 1110.6.19$	
(2705 4)	3471.4	0 57 9	7737	av $E\beta = 1111 \ 3 \ 19$	
(2740 4)	3435.74	0.21 2	8.19.5	av $E\beta = 1128.0$ 19	
(2742.4)	3434.41	1.1 /	7.47 4	av $E\beta = 1128.6 \ 19$	
(2797 4)	3379.4	0.02 1	9.25 22	av $E\beta = 1154.2$ 19	
(2798 4)	3378.23	0.8 2	7.64 11	av $E\beta = 1154.8 \ 19$	
(2827 4)	3348.56	4.6 5	6.90 5	av $E\beta = 1168.6 \ 19$	
(2836 4)	3339.95	0.06 2	8.79 15	av E β =1172.7 19	
(2869 4)	3307.2	0.25 6	8.20 11	av E β =1188.0 <i>19</i>	
(2889 4)	3287.24	0.08 3	8.70 17	av $E\beta = 1197.3 \ 19$	
(2900 4)	3275.80	0.17 3	8.38 8	av E β =1202.6 <i>19</i>	
(2925 4)	3250.65	0.07 2	8.78 13	av E β =1214.4 <i>19</i>	
(2957 4)	3218.51	0.15 2	8.47 6	av Eβ=1229.5 19	
(2959 4)	3217.47	0.35 4	8.11 5	av Eβ=1229.9 19	
(2959 4)	3216.74	4.5 9	7.00 9	av Eβ=1230.3 19	
(2963 4)	3213.08	1.3 <i>I</i>	7.54 4	av Eβ=1232.0 <i>19</i>	
(3000 4)	3175.64	2.9 3	7.21 5	av Eβ=1249.5 19	
(3038 4)	3137.64	0.26 6	8.28 10	av Eβ=1267.4 <i>19</i>	
(3057 4)	3119.12	1.6 2	7.51 6	av E β =1276.0 <i>19</i>	

Continued on next page (footnotes at end of table)

¹¹⁶Ag β^- decay (237 s) 2009Ba52,2005Ba94 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-‡}	$\log ft^{\dagger}$	Comments
(3073 4)	3102.7	0.20 5	8.42 11	av E β =1283.7 19
(3107 4)	3068.94	0.25 5	8.34 9	av $E\beta = 1299.6 \ 19$
(3161 4)	3015.19	1.5 2	7.60 6	av E β =1324.8 19
(3175 4)	3001.44	1.3 2	7.67 7	av $E\beta = 1331.3 \ I9$
(3198 4)	2978.28	0.13 4	8.68 14	av Eβ=1342.2 <i>19</i>
(3313 4)	2862.64	0.3 1	8.38 15	av E β =1396.6 19
(3330 4)	2845.71	0.13 3	8.75 10	av E β =1404.6 19
(3332 4)	2844.10	1.3 2	7.75 7	av Eβ=1405.3 19
(3347 4)	2829.06	1.3 2	7.76 7	av E β =1412.4 19
(3373 4)	2802.77	1.2 2	7.81 8	av E β =1424.8 19
(3392 4)	2784.11	0.3 1	8.42 15	av E β =1433.6 19
(3416 4)	2760.31	1.0 2	7.91 9	av E β =1444.8 19
(3456 4)	2720.33	0.7 1	8.09 7	av E β =1463.6 19
(3522 4)	2653.52	0.5 1	8.27 9	av E β =1495.2 19
(3658 4)	2518.35	4.6 3	7.38 <i>3</i>	av E β =1559.0 19
(3698 4)	2478.22	4.1 7	7.45 8	av E β =1578.0 19
(3741 4)	2435.32	0.4 1	$10.1^{1u} I$	av Eβ=1585.7 19
(3784 4)	2392.04	0.4 1	8.50 11	av E β =1618.7 19
				Log <i>ft</i> : 10.1 <i>1</i> from Table x of 2009Ba52 with assumed first-forbidden unique transition
$(3881 \ 1)$	220/ 07	071	$0 00^{1u} 7$	av $EB = 1651 \text{ A} 10$
(3001 +) (4058 - 4)	2118 /2	0.71	8 28 5	av EB = 1051.4 T av EB = 1748 3 10
(4030 +)	1051.40	1.2.1	0.20 J	av = 19127 10
(4223 +) (4247 + 4)	1928 61	0.37.7	876.9	av Ep=1012.7.79 av $FR=1838.3.79$
(1217 1) (1533 1)	1642.65	1.4.2	10.0^{1u} 1	av EB = 1050.5 T / 2
(4333 + 7)	1380.36	1.72	8717	av EB = 1958.2 T P
(4790 +) (4803 - 4)	1282.60	0.10.8	0.32 10	av EB = 2098.779
$(4062 \ 4)$	1212.00	267	$10.0^{1}u$ 1	$av E_{D} = 2145.2 17$
(4905 4)	512.50	2.07	10.0 I	$av = E_{0}^{2} - 2402.4.10$
(3003.4)	513.50	4 Z	10.21 2	av $Ep = 2495.4$ 19 av $Ep = 2755.7$ 10
(01/0.4)	0	≈39	≈7.5	av $Ep=2/33.1$ 19 10^{-1} , from a second log fr 7.5 for a 0^{-1} for the forbidden transition
				μ : from assumed log μ = 1.5 for a 0 to 0°, first forbidden transition.

[†] Deduced by the compilers. The values are nearly the same as in Table iv of 2009Ba52, the authors state that log *ft* values should be considered as lower limits, especially, for weak β feedings, due to "pandemonium" effect.

[‡] Absolute intensity per 100 decays.

$\gamma(^{116}\text{Cd})$

Eγ	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Eγ	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$
423.1 3	0.05 2	1642.65	2^{+}	1219.50 4+	650.1 <i>3</i>	0.18 5	3434.41		2784.11
470.5 <i>3</i>	0.04 [#] 3	2392.04	3-	1921.72 3-	668.7 2	0.32 [‡] 4	1951.40	2^{+}	1282.60 0+
513.5 <i>1</i>	37 [‡] 2	513.50	2^{+}	$0 0^{+}$	696.5 2	0.09 [#] 5	1915.94	3+	1219.50 4+
545.6 2	0.07 [‡] 1	3348.56		2802.77	699.6 <i>3</i>	5.9 4	1213.09	2^{+}	513.50 2+
555.2 <i>3</i>	0.03 [#] 1	3275.80		2720.33	702.9 <i>3</i>	0.6 [#] 2	1915.94	3+	1213.09 2+
556.2 4	0.015 [#] 7	2478.22	1-	1921.72 3-	706.0 1	2.7 2	1219.50	4+	513.50 2+
567.0 2	0.06 [‡] 1	2518.35	2^{-}	1951.40 2+	708.6 1	0.4 [#] 3	1921.72	3-	1213.09 2+
596.6 <i>3</i>	0.06 2	2518.35	2-	1921.72 3-	712.6 <i>3</i>	0.5 1	3473.00		2760.31
602.7 2	0.08 2	2518.35	2^{-}	1915.94 3+	734.9 2	0.08 [#] 1	3213.08		2478.22 1-
610.2 2	0.48 [‡] 4	3473.00		2862.64	^x 751.8 3	0.022 7			
640.9 2	1.2 1	3119.12	1-	2478.22 1-	769.1 2	0.85 7	1282.60	0^+	513.50 2+

¹¹⁶ Ag β^- decay (237 s)	2009Ba52,2005Ba94 (continued)
$\operatorname{Ag}\beta$ decay (257 s)	2009Ba52,2005Ba94 (continued

					<u>/(cu)(</u>	continued)				
Eγ	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Eγ	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
776.2 2	0.06 [‡] 2	3348.56		2572.44	1513.6 [@] 5	0.06 3	3435.74		1921.72	3-
782.6 2	0.25 [‡] 3	3542.92		2760.31	^x 1518.7 3	0.009 3				
^x 793.3 3	0.012 6				^x 1521.1 3	0.015 4				
798.5 2	0.11 2	2720.33		1921.72 3-	1533.4 4	0.14 [#] 3	3175.64		1642.65	2+
829.0 3	0.195	3307.2		2478.22 1	1550.8 2	0.29 3	34/3.00		1921.72	3
830.4 3	0.09^{+} I	3348.56		2518.35 2	1564.4 2	0.03 I	2784.11		1219.50	4' 2+
861.1 3	0.02'' I	33/9.4	0+	2518.35 2	1570.4 4	0.197 2	3213.08		1642.65	2+
867.03 870.23	0.69" 8 0.5 <i>1</i>	1380.36 3348.56	01	$513.50 \ 2^{+}$ 2478.22 1 ⁻	^{15/4.8} 2 ^x 1590.5 3	0.11 <i>1</i> 0.028 <i>6</i>	3217.47		1642.65	21
913.3 2	0.14 [‡] 1	3348.56		2435.32 2+	1604.9 2	0.66 5	2118.42		513.50	2^{+}
917.6 <i>3</i>	0.05 [#] 1	3435.74		2518.35 2-	1632.6 2	0.10 3	2845.71		1213.09	2^{+}
917.8 <i>3</i>	0.06 [#] 1	3213.08		2294.97 2+	1642.6 2	0.68 [‡] 9	1642.65	2^{+}	0	0^{+}
941.0 2	0.05 1	2862.64		1921.72 3-	1649.3 2	0.13 2	2862.64		1213.09	2+
954.6 2	0.09+ 1	3674.75		2720.33	*1662.1 3	0.017 4				
995.1 2	$0.68^{+} 6$	3473.00		2478.22 1	^x 1697.4 3	0.04 1	2240.56		1610.65	2+
1009.6 2	0.08'' 2	3527.99		2518.35 2	1705.7 2	0.132	3348.56		1642.65	2*
1053.9 <i>3</i> 1056.6 <i>3</i>	0.08+ 3 0.03 1	3348.56 2978.28		$2294.97 2^+$ 1921.72 3 ⁻	$1729.8\ 2$ $x1752.2\ 3$	0.22+ 2 0.05 <i>1</i>	4573.91		2844.10	
1081.3 2	0.40 [‡] 3	3473.00		2392.04 3-	1758.6 2	0.14 1	3674.75		1915.94	3+
1093.6 2	0.12 1	3015.19		1921.72 3-	x1765.0 3	0.05 1				
1098.0 3	0.03" 2	2478.22	1-	1380.36 0+	1781.5 2	0.67 6	2294.97	2+	513.50	2+
1129.1 1	$1.0^{+} I$	1642.65	$2^+_{2^+}$	$513.50\ 2^+$	1791.6 2	0.12 3	3434.41		1642.65	$2^+_{2^+}$
1152.7 2	0.21 2	2455.52 3560.85	2	$2392.04 3^{-1}$	x1813.1 3	0.44 5	5015.19		1213.09	Ζ
1178.2 4	0.02 1	3473.00		2294.97 2+	1824.0 3	0.04 2	3745.96		1921.72	3-
1179.0 2	0.14 3	2392.04	3-	1213.09 2+	1837.1 2	0.15 [‡] 2	3217.47		1380.36	0^+
1180.9 5	0.05 [#] 2	3102.7		1921.72 3-	^x 1858.1 3	0.03 1				
^x 1196.9 3	0.039 8				1872.7 2	0.28 4	3794.44		1921.72	3-
1213.1 <i>I</i>	3.1+ 3	1213.09	$2^+_{2^+}$	$0 0^{+}$	1878.6 <i>1</i>	0.67 [#] 9	2392.04	3-	513.50	2^{+}
1222.4 3	0.134 0.0245	2435.32	2.	1213.09 2	^x 1899.2 3 ^x 1903 7 3	0.03 I 0.04 I				
1254.3.3	0.02^{+}	3175 64		1921 72 3-	1917.6.2	0.12.2	3839 34		1921 72	3-
1260.0.3	$0.07^{\#}$ 2	3175.64		1915.94 3+	1951.4 /	$0.13^{\ddagger} 2$	1951.40	2^{+}	0	0^{+}
1267.1 2	$0.11^{\ddagger} 2$	3218.51		$1951.40 2^+$	1965.3.3	0.37.5	2478.22	1-	513.50	2+
1276.8 3	0.05 [#] 2	3795.2		2518.35 2-	2004.8 2	0.9 1	2518.35	2-	513.50	2+
1291.5 2	0.26 [‡] 3	3213.08		1921.72 3-	^x 2030.9 3	0.029 8				
1297.0 <i>3</i>	$0.40^{\ddagger} 4$	3213.08		1915.94 3+	2059.0 2	0.07 [#] 1	2572.44		513.50	2^{+}
1305.2 <i>I</i>	2.6 [‡] 2	2518.35	2^{-}	1213.09 2+	2062.8 2	0.10 [#] 3	3275.80		1213.09	2^{+}
1354.0 2	0.13 1	3745.96		2392.04 3-	2091.0 2	0.41 [‡] 6	3471.4		1380.36	0^+
1402.5 2	0.69 7	1915.94	3+	513.50 2+	^x 2103.5 3	0.014 3				
1406.7 <i>3</i> 1408.2 <i>1</i>	$0.05^{#} 2$ 1.5 2	3925.1 1921.72	3-	$2518.35 \ 2^{-}$ $513.50 \ 2^{+}$	^x 2126.7 5 2135.3 2	0.04 <i>3</i> 1.0 <i>1</i>	3348.56		1213.09	2+
1415.1 2	0.28 [#] 4	1928.61	0^{+}	513.50 2+	2140.0 2	0.38 5	2653.52		513.50	2^{+}
1437.9 <i>1</i>	0.75 6	1951.40	2^{+}	513.50 2+	2165.1 2	0.08 3	3378.23		1213.09	2^{+}
1462.2 3	0.3 [#] 2	3378.23		1915.94 3+	^x 2171.2 3	0.04 1				
1484.3 2	0.05 [‡] 1	3435.74		1951.40 2+	2206.8 2	0.48 6	2720.33		513.50	2^{+}
1501.0 2	0.06 [‡] 1	2720.33		1219.50 4+	2246.6 2	0.59 7	2760.31		513.50	2+
^1507.8 <i>3</i>	0.037 4				2270.7 2	0.39 7	2784.11		513.50	2+

$\gamma(^{116}\text{Cd})$ (continued)

Continued on next page (footnotes at end of table)

				$^{116}\mathrm{Ag}\beta^{-}$	decay	y (237 s)	009Ba52,2005Ba94 (continued)				
						<u>γ(¹¹⁶C</u>	d) (continued)				
E_{γ}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E_{γ}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
2289.2 1	1.0 1	2802.77	_	513.50	2+	3476.2 2	0.19 5	4689.30	_	1213.09	2+
2315.7 5	0.30 5	2829.06	1	513.50	2+	3484.5 2	0.07 2	4697.65		1213.09	2^{+}
2330.6 1	0.69 8	2844.10		513.50	2+	3511.8 2	0.03 [‡] 1	3511.86		0	0^+
2349.1 2	0.53 6	2862.64		513.50	2+	3531.5 2	0.03 [‡] 1	3531.56		0	0^{+}
*2378.0 4	0.041 8					3542.1 2	0.09 2	4755.25		1213.09	2+
*2424.9 5	0.0075		a +		0.±	3601.3 2	0.12+ 3	3601.36		0	0+
2435.3 2 x2448 7 3	$0.10^{+} 2$ 0.034 8	2435.32	21	0	0'	3622.3 2	0.102	4135.86		513.50	2+
2446.7 3	0.034 8	2978.28		513.50	2^{+}	x3663.8 3	0.009 3	41/7.2		515.50	2
2478.2 1	5.3 [‡] 7	2478.22	1-	0	0^{+}	3681.8 2	0.02 1	3681.86		0	0^{+}
2487.9 <i>3</i>	0.49 9	3001.44		513.50	2^{+}	^x 3703.3 4	0.009 4				
2501.3 2	0.6 1	3015.19		513.50	2+	3708.2 <i>3</i>	0.05 [‡] 1	3708.39		0	0^+
2545.6 2	0.11 [‡] 2	3758.72		1213.09	2+	3733.4 <i>3</i>	0.11 3	4247.0		513.50	2^{+}
2589.2 <i>3</i>	0.10 [#] 4	3102.7		513.50	2+	3805.9 2	0.02^{\ddagger} 1	3805.97		0	0^+
2624.1 2	0.19 [‡] 4	3137.64		513.50	2+	^x 3817.2 5	0.003 1				
2640.3 2	0.13 4	4562.06		1921.72	3-	3850.6 <i>3</i>	$0.07^{\ddagger} 2$	3850.7		0	0^+
2662.0 1	1.9 3	3175.64		513.50	2+	x3850.8 3	0.028 5	1270 17		512 50	2+
2075.24	0.02 I	2216 74		512 50	2+	2004.9 Z	0.002	43/0.4/		515.50	2 0+
2703.21	5.4 J 0.42 7	2760.31		0		3918.5.2	$0.02 \cdot 1$ $0.04 \cdot 1$	3877.87 4432.07		513.50	2^+
2773.7 2	0.06 2	3287.24		513.50	2+	3935.9 3	0.02 1	4449.5		513.50	2^{+}
2801.1 2	0.18 [#] 3	4083.63		1282.60	0^+	3943.0 2	0.03 [‡] 1	3943.07		0	0^+
^x 2811.7 3	0.034 6					3962.4 2	0.07 2	4475.95		513.50	2^{+}
2829.0 2	0.7 [‡] 1	2829.06	1	0	0^+	4009.6 <i>3</i>	0.04 1	4009.7		0	0^+
2835.1 2	1.4 2	3348.56		513.50	2+	4022.9 2	0.05^{\ddagger} 1	4022.97		0	0^+
2843.8 <i>3</i>	0.5 [‡] 1	2844.10		0	0^+	4057.8 2	0.02^{\ddagger} 1	4057.88		0	0^+
2864.9 4	0.19 4	3378.23		513.50	2+	4083.3 <i>3</i>	0.09 [‡] 3	4083.63		0	0^+
2867.2 3	0.19 [‡] 7	4080.3		1213.09	2^+	4101.2 2	0.16 4	4614.86		513.50	2^{+}
2921.1 2 x2030 4 4	0.51 8	3434.41		513.50	2+	4118.4 3	0.02 I	4632.0		513.50	2+ 2+
x2943.0 5	0.000 2					4129.0 2	0.03 1	4647.4		513.50	2^{+}
2959.4 2	0.49 8	3473.00		513.50	2^{+}	^x 4151.0 4	0.007 3				
3001.4 <i>1</i>	0.5 [‡] 1	3001.44		0	0^+	^x 4178.4 4	0.008 2				
3014.6 4	0.10 [#] 5	3527.99		513.50	2+	4231.4 2	0.02^{\ddagger} 1	4231.48		0	0^+
3029.4 4	0.02^{\ddagger} 1	3542.92		513.50	2+	4259.4 3	0.012 4	4773.0		513.50	2^{+}
x3047.9 4	0.018 5			_		x4259.6 4	0.005 2				- 1
3068.9 2	0.19+ 5	3068.94		0	0+	4273.6 2	0.018 6	4787.19		513.50	2+
3082.0 3	0.04 I	3595.5		513.50	2^+ 2+	4290.1 2	0.02^{+} 1	4290.19		0	0^+ 2+
3194.9 2	0.14.5 0.13 [#] 7	3700.39		513.50	2 2+	4313.5 2	0.04 I	4020.09		513.50	2 2+
3233.7 2	0.13 7	3732.33		513.50	2^{+}	4411.0 3	0.011 4	4910.0		513.50	2^{+}
3250.6 2	$0.05^{\ddagger} 2$	3250.65		0	0^{+}	4428.2 2	0.05^{\ddagger} 1	4428.29		0	0^{+}
3328.0 <i>3</i>	0.08 [#] 3	3841.6		513.50	2+	4440.0 3	0.030 8	4953.6		513.50	2+
3339.9 2	$0.05^{\ddagger} 2$	3339.95		0	0^{+}	4455.3 2	0.05 2	4968.90		513.50	2+
3348.8 <i>3</i>	0.12 [‡] 9	3348.56		0	0^{+}	4475.8 3	0.04 [‡] 1	4475.95		0	0^{+}
^x 3359.5 <i>3</i>	0.027 4					^x 4486.8 5	0.006 2				
^x 3371.9 <i>3</i>	0.010 3					4539.1 2	0.02 1	4539.20		0	0^+
3401.8 2	0.33 9	4614.86		1213.09	2+	4590.7 2	0.05 [‡] 1	4590.80		0	0^+
3429.7 2	0.07 2	4642.71		1213.09	2+	^x 4633.4 4	0.006 2				
3439.8 2	$0.09^+ 3$	4652.95		1213.09	$2^+_{2^+}$	4688.9 5	0.010+ 4	4689.30		0	0^{+}
34/1.1 3	0.10 3	3984./		515.50 C	∠ ontin	ued on next	nage (footnot	es at end of	ftable)	

$^{116}\mathrm{Ag}\,\beta^{-}$ decay (237 s) 2009Ba52,2005Ba94 (continued)

γ (¹¹⁶Cd) (continued)

 † From singles γ and $\gamma\gamma$ coin spectra, unless otherwise stated.

- [‡] From γ singles spectra.
- [#] From $\gamma\gamma$ coincidence spectra. ^(a) 1531.6 listed in Table vi of 2009Ba52 is a misprint.
- $^{\&}$ For absolute intensity per 100 decays, multiply by $\approx \! 1.3.$
- $x \gamma$ ray not placed in level scheme.

Decay Scheme

Decay Scheme (continued)

Decay Scheme (continued)

 $^{116}_{48}\mathrm{Cd}_{68}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

$\frac{116}{\text{Ag }\beta^{-} \text{ decay (237 s)}} 2009\text{Ba52,2005Ba94}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

Decay Scheme (continued)

Decay Scheme (continued)

15