¹¹⁶Ag β^- decay (20 s) 2009Ba52,2005Ba94

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 111, 717 (2010)	1-Dec-2009

Parent: ¹¹⁶Ag: E=47.9 *1*; $J^{\pi}=(3^+)$; $T_{1/2}=20 \text{ s } 1$; $Q(\beta^-)=6176 4$; $\%\beta^-$ decay=93 4

¹¹⁶Ag-E,J^{π},T_{1/2}: From 2005Ba94. This isomer decays \approx 7 4 % by an isomeric E3 transition of 47.9 keV to g.s., (0⁻) of ¹¹⁶Ag. Likely configuration= π 1/2[301] \otimes ν 7/2[523].

¹¹⁶Ag-Q(β^{-}): From 2009AuZZ.

¹¹⁶Ag- $\%\beta^{-}$ decay: %IT=7 4 from 2005Ba94.

2009Ba52: ¹¹⁶Ag activity was produced by the 40-MeV protons bombarding a ²³⁸UC_x target installed at the On-Line Test Facility (oltf) at the Holifield Radioactive Ion Beam Facility (hribf). Fission products was separated and deposited on a moving tape collector (mtc).

Measured E γ , I γ , $\gamma\gamma$, conversion electron- γ with the (cards) detector array, composed of the three segmented-clover Ge detectors, plastic scintillators and a high-resolution Si conversion-electron spectrometer (besca).

Transitions arising from the respective short-lived isomers were separated by their half-lives.

The γ - γ and conversion electron- γ coincidences were used to construct the decay scheme in ¹¹⁶Cd after the β decay of the isomer 20 s ¹¹⁶Ag.

¹¹⁶Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0^{+}	
513.50 7	2^{+}	
1213.11 7	2+	
1219.48 9	4^{+}	
1642.60 10	2+	
1869.78 <i>14</i>	4+	
1915.99 <i>10</i>	3+	
1921.68 10	3-	
1951.41 8	2^{+}	
2302.98 22		
2340.11 12	(4 ⁻)	J^{n} : 4 ⁻ in figure 5 and Table I of 2009Ba52; but this assignment is inconsistent with multipolarities assigned to 418 and 424 γ rays.
2377.31 18		J^{π} : (3 ⁺) in figure 5; not listed in Table I of 2009Ba52.
2392.14 22	(3-)	J^{π} : from table iv of 2009Ba52 and discussion in text; 2 ⁺ in figure 5, not listed in Table I of 2009Ba52.
2493.69 22		
2518.38 9	(2^{-})	J^{π} : $J=2^{-}$ in Table I of 2009Ba52.
		Compilers' note: there seems problem with the inventory of γ rays from this level as listed in table I of 2009Ba52. Strong transitions as seen in the decay of the ground state are not listed here. It is not clear how the β feeding of 2.2 has been obtained.
2784.2 <i>3</i>		
2822.42 14		
2844.0 <i>3</i>		
2915.41 22		
3124.7 <i>3</i>		
3228.06 16		
3294.41 16		
3303.2 3		
3304.18 18		
3354.90 20		

[†] From least-squares fit to $E\gamma$'s.

[‡] From Table iv of 2009Ba52.

¹¹⁶ Ag β^- decay (20 s)	2009Ba52,2005Ba94	(continued)
--	-------------------	-------------

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-‡}	$\log ft^{\dagger}$	Comments
(2869.4)	3354.90	21.2	5.21.5	av $F\beta = 1188.1.19$
(2920 4)	3304.18	8.5 5	5.64 4	av $E\beta = 1211.8 \ I9$
(2921 4)	3303.2	3.0 3	6.09 5	av E β =1212.2 19
(2929 4)	3294.41	20 1	5.27 3	av $E\beta = 1216.4 \ I9$
(2996 4)	3228.06	3.5 5	6.07 7	av $E\beta = 1247.4 \ 19$
(3099 4)	3124.7	1.6 4	6.47 11	av $E\beta = 1295.9 \ 19$
(3308 4)	2915.41	0.6 2	7.02 15	av $E\beta = 1394.3 \ 19$
(3380 4)	2844.0	5.2 5	6.12 5	av Eβ=1427.9 19
(3401 4)	2822.42	10.5 8	5.83 4	av E β =1438.1 19
(3440 4)	2784.2	1.0 5	6.87 22	av E β =1456.1 19
(3706 4)	2518.38	2.2 9	6.66 18	av E β =1581.6 19
(3730 4)	2493.69	0.4 2	7.42 22	av E β =1593.3 19
(3832 4)	2392.14	1.8 2	6.81 6	av E β =1641.3 19
(3847 4)	2377.31	2.8 4	6.63 7	av E β =1648.4 19
(3884 4)	2340.11	1.3 <i>I</i>	6.98 4	av E β =1666.0 19
(3921 4)	2302.98	0.36 17	7.56 21	av E β =1683.5 19
(4272 4)	1951.41	2.1 6	6.95 <i>13</i>	av E β =1850.2 19
(4302 4)	1921.68	4.8 5	6.61 5	av E β =1864.3 19
(4308 4)	1915.99	5.2 5	6.57 5	av E β =1867.0 19
(4354 4)	1869.78	2.6 17	6.9 <i>3</i>	av E β =1889.0 19
(4581 4)	1642.60	1.1 2	7.37 9	av E β =1996.9 19

[†] The values are nearly the same as in Table iv of 2009Ba52, the authors state that log *ft* values should be considered as lower limits, especially, for weak β feedings, due to "pandemonium" effect.

[‡] Absolute intensity per 100 decays.

$\gamma(^{116}\text{Cd})$

Unplaced γ rays are from the decay of 20-s or the 9.3-s isomer.

Eγ	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{a}	Comments
^x 152.8 3	0.06 1							
^x 198.7 3	0.21 4							
^x 204.2 3	0.14 3							
^x 315.1 3	0.11 2							
^x 374.3 3	0.04 3							
418.3 <i>3</i>	0.03 [‡] 1	2340.11	(4-)	1921.68	3-			Mult.: E1 proposed by 2009Ba52 based on K/L ratio is inconsistent with ΔJ^{π} .
423.1 2	0.012 5	1642.60	2^{+}	1219.48	4^{+}			
423.9 2	0.14 2	2340.11	(4^{-})	1915.99	3+			α (K)exp=7×10 ⁻³ 3
			. ,					Mult.: M1 proposed by 2009Ba52 is inconsistent with ΔJ^{π} .
								α (K)exp=8×10 ⁻³ 2 is also listed in the text on page 9 of 2009Ba52.
470.5 <i>3</i>	0.04 [@] 3	2392.14	(3 ⁻)	1921.68	3-			
513.5 <i>1</i>	36 [‡] 3	513.50	2+	0.0	0^{+}	E2	0.00617 9	α (K)exp=5.3×10 ⁻³ <i>l</i>
								$\alpha(K)=0.00532 \ 8; \ \alpha(L)=0.000693 \ 10; \ \alpha(M)=0.0001335 \ 19; \ \alpha(N)=2.35\times10^{-5} \ 4 \ \alpha(O)=1.210\times10^{-6} \ 17; \ \alpha(N+)=2.47\times10^{-5} \ 4 \ \alpha(K)$ exp: Uncertainty of 0.00001 in Table I of

Continued on next page (footnotes at end of table)

¹¹⁶Ag β^- decay (20 s) 2009Ba52,2005Ba94 (continued)

γ ⁽¹¹⁶Cd) (continued)</sup>

Eγ	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{a}	Comments
			_					2009Ba52 seems unrealistic, the compilers have increased the uncertainty by a factor of 10
x552.1 3	0.03 1							10.
567.0 2	0.16 [@] 3	2518.38	(2^{-})	1951.41	2^{+}			
596.6 <i>3</i>	0.15 [@] 3	2518.38	(2^{-})	1921.68	3-			
602.7 2	0.20 [@] 6	2518.38	(2^{-})	1915.99	3+			
650.2 2	0.31 2	1869.78	4+	1219.48	4+	M1,E2	0.00340 17	$\alpha(K)\exp=2.9\times10^{-3} 4$ $\alpha(K)=0.00295 \ 16; \ \alpha(L)=0.000361 \ 10;$ $\alpha(M)=6.92\times10^{-5} \ 18; \ \alpha(N)=1.23\times10^{-5} \ 4;$ $\alpha(O)=6.9\times10^{-7} \ 5$ $\alpha(N+)=1.30\times10^{-5} \ 4$
656.7 2	0.65 5	1869.78	4+	1213.11	2+	M1,E2	0.00331 17	$\begin{aligned} &\alpha(K)\exp=3.0\times10^{-3} \ 3\\ &\alpha(K)=0.00288 \ 16; \ \alpha(L)=0.000352 \ 10;\\ &\alpha(M)=6.75\times10^{-5} \ 18; \ \alpha(N)=1.20\times10^{-5} \ 4;\\ &\alpha(O)=6.8\times10^{-7} \ 5\\ &\alpha(N+)=1.27\times10^{-5} \ 5 \end{aligned}$
*689.0 3 696 5 2	0.05 1	1015 00	3+	1210/18	1 ⁺			
699.6 2	8.5 6	1213.11	2+	513.50	2+	M1,E2	0.00284 17	$\alpha(K) \exp = 2.4 \times 10^{-3} \ 4$ $\alpha(K) = 0.00247 \ 16; \ \alpha(L) = 0.000300 \ 11;$ $\alpha(M) = 5.75 \times 10^{-5} \ 21; \ \alpha(N) = 1.02 \times 10^{-5} \ 4;$ $\alpha(O) = 5.8 \times 10^{-7} \ 5$
	#							α (N+)=1.08×10 ⁻⁵ 5
702.9 3	1.0 [#] 1	1915.99	3+	1213.11	2+			an 10-3 n
706.0 1	10 1	1219.48	4+	513.50	2+	E2	0.00261 4	$\alpha(K)\exp=2.2\times10^{-5} 2$ $\alpha(K)=0.00227 4; \ \alpha(L)=0.000283 4;$ $\alpha(M)=5.43\times10^{-5} 8; \ \alpha(N)=9.61\times10^{-6} 14;$ $\alpha(O)=5.24\times10^{-7} 8$ $\alpha(N+)=1.013\times10^{-5} 15$
708.6 2 ^x 738.7 3 ^x 754.0 3 ^x 784.8 3 ^x 862.4 5 ^x 873.9 3 ^x 896 5 3	0.8 [#] 2 0.02 <i>I</i> 0.07 2 0.07 <i>3</i> 0.2 <i>I</i> 0.07 <i>I</i> 0.14 7	1921.68	3-	1213.11	2+			
901.0 2 ^x 930.0 3 ^x 953.6 3 ^x 977.3 3	0.45 6 0.014 10 0.03 2 0.03 1	2822.42		1921.68	3-			
1083.5 2	0.15 1	2302.98		1219.48	4+			
1120.7 <i>I</i>	0.34 3	2340.11	(4^{-})	1219.48	4+ 2+			
1129.1 <i>1</i> 1157.8.3	0.22 2	1042.60 2377-31	2.	513.50 1219.48	2' 4+			
1164 1 3	0.02	2377 31		1219.40	- 2+			
110 4 .1 J	0.10^{+} 3	2311.31	(3^{-})	1213.11	∠ 2+			
^x 1180.6 4	0.10^{-2} 0.03^{-1}	2372.14	(3)	1213.11	4			
1213.1 <i>I</i>	4.2 3	1213.11	2+	0.0	0^+			
^x 1250.5 4	0.03 1							
^1269.5 5	0.0149	a 105 - 55						
1274.2 2 1356.4 <i>3</i>	0.18 [#] 5 0.11 2	2493.69 1869.78	4+	1219.48 513.50	4+ 2+			

Continued on next page (footnotes at end of table)

2009Ba52,2005Ba94 (continued)

		γ ⁽¹¹⁶ Cd) (continued)									
Eγ	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f J	J_f^{π}	Eγ	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1378.4 <i>3</i>	0.7 [‡] 1	3294.41		1915.99 3	3+	1911.6 <i>3</i>	0.7 1	3124.7		1213.11	2^{+}
1381.5 <i>3</i>	1.3 <i>I</i>	3303.2		1921.68 3	3-	^x 1918.0 5	0.02 1				
1402.5 <i>1</i>	1.4 2	1915.99	3+	513.50 2	2+	^x 1922.4 5	0.03 1				
1408.2 <i>1</i>	2.8 2	1921.68	3-	513.50 2	2+	1951.4 <i>1</i>	0.13 3	1951.41	2^{+}	0.0	0^{+}
^x 1422.2 5	0.02 1					2008.4 2	1.0 [#] 2	3228.06		1219.48	4+
1437.9 <i>1</i>	0.8 2	1951.41	2^{+}	513.50 2	2+	^x 2012.8 5	0.04 1				
^x 1517.2 3	0.13 3					2015.1 2	0.39 [#] 7	3228.06		1213.11	2^{+}
^x 1549.5 5	0.03 1					2075.0 4	1.1 [#] 2	3294.41		1219.48	4+
1603.0 <i>3</i>	1.5 2	2822.42		1219.48 4	1 ⁺	2081.5 4	4.4 [#] 4	3294.41		1213.11	2^{+}
1609.3 5	0.7 1	2822.42		1213.11 2	2+	2084.7 2	2.1 [#] 2	3304.18		1219.48	4+
^x 1630.9 5	0.008 6					2091.0 <i>3</i>	1.3 2	3304.18		1213.11	2^{+}
1642.6 2	0.15 2	1642.60	2^{+}	0.0 0)+	2135.4 2	1.4 2	3354.90		1219.48	4+
^x 1676.8 4	0.04 1					2270.7 <i>3</i>	0.4 2	2784.2		513.50	2^{+}
1696.0 <i>3</i>	0.23 3	2915.41		1219.48 4	1+	2308.6 2	1.5 2	2822.42		513.50	2^{+}
1702.2 3	0.23 [‡] 3	2915.41		1213.11 2	2+	2330.6 <i>3</i>	1.3 2	2844.0		513.50	2^{+}
^x 1858.2 4	0.04 1					2780.8 2	2.0 [#] 2	3294.41		513.50	2^{+}
1863.9 <i>3</i>	0.36 [‡] 7	2377.31		513.50 2	2+	2841.4 5	6.8 8	3354.90		513.50	2^{+}
1878.6 4	0.52 7	2392.14	(3-)	513.50 2	2+	2843.8 5	0.7 1	2844.0		0.0	0^+

 $^{116}\mathrm{Ag}\,\beta^-$ decay (20 s)

 † From singles γ and $\gamma\gamma$ coin spectra, unless otherwise stated.

[‡] From γ singles spectra.

[#] From $\gamma\gamma$ coincidence spectra. ^(a) From ¹¹⁶Ag_{gs} decay data.

& For absolute intensity per 100 decays, multiply by ≈ 2.6 .

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹¹⁶Ag β^- decay (20 s) 2009Ba52,2005Ba94

Decay Scheme

$^{116}{\rm Ag}\,\beta^-$ decay (20 s) 2009Ba52,2005Ba94

Decay Scheme (continued)

