¹¹⁶Cd(α ,5n γ) **1979Ha12**

History						
Type Author		Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 113, 2391 (2012)	1-Sep-2012			

E=30-67 MeV.

Measured $\gamma\gamma$ -coin, $\gamma(\theta)$, γ -ray excit; photon- and ce-transition data via ¹¹⁶Cd(α ,5n γ) E α =64 MeV are given. Cross bombardment spectra via ¹¹⁴Cd(α ,3n γ) studied.

¹¹⁵Sn Levels

(ν h11/2) band; Δ J=2 level spacing corresponds with ¹¹⁴Sn, ¹¹⁶Sn g.s. bands up to 4⁺. See 1978HaZP, 1979Ha12 for empirical syst of high-spin states in odd-mass ¹⁰⁹Sn-¹¹⁷Sn isotopes.

E(level)	$J^{\pi \dagger}$	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	$1/2^{+}$		2024.6	$15/2^{-}$	3838.5	$(25/2^+)$
497.3	$3/2^{+}$		3002.9	19/2-	4162.0	
612.7	$7/2^{+}$	3.26 µs 8	3508.7	$21/2^{+}$	4271.1	$(27/2^+)$
713.4	$11/2^{-}$	159 μs 1	3665.5	$(23/2^+)$		

[†] From Adopted Levels.

 $\gamma(^{115}{\rm Sn})$

 $\alpha(K)\exp=ce(K)/I\gamma$ calibrated to E2 transitions of adjacent even tin isotopes. γ placements are consistent with intensity balance and comparison of γ singles via $(\alpha, 3n\gamma), (\alpha, 5n\gamma)$. $\gamma(\theta)$: measured at 5 angles $(\theta=90^{\circ}-153^{\circ})$.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α #	Comments
(100.7 [†] 3)		713.4	11/2-	612.7	7/2+	M2		5.7	
(115.4 [†] 2)		612.7	7/2+	497.3	$3/2^{+}$	E2		0.96	
156.8 3	39 <i>5</i>	3665.5	$(23/2^+)$	3508.7	$21/2^{+}$	(M1,E2)			
173.0 <i>3</i>	31 4	3838.5	$(25/2^+)$	3665.5	$(23/2^+)$	(M1,E2)			
323.5 <i>3</i>	2 1	4162.0		3838.5	$(25/2^+)$				
329.8 <i>3</i>	2 1	3838.5	$(25/2^+)$	3508.7	$21/2^{+}$				
432.6 <i>3</i>	14 <i>3</i>	4271.1	$(27/2^+)$	3838.5	$(25/2^+)$	M1,E2			$\alpha(K) \exp = 0.012 4$
497.3 <i>3</i>	133 15	497.3	$3/2^{+}$	0.0	$1/2^{+}$	M1+E2	+0.21 2	0.00805 1	$\alpha(K) \exp = 0.0076 \ 10$
505.8 <i>3</i>	44 5	3508.7	$21/2^{+}$	3002.9	19/2-	E1			$\alpha(K) \exp = 0.0021 \ 10$
^x 513.5 [@] 3	14 <i>3</i>								Tentative assignment.
978.3 <i>3</i>	46 6	3002.9	$19/2^{-}$	2024.6	$15/2^{-}$	E2			$\alpha(K) \exp = 0.0008 6$
1311.2 3	100	2024.6	$15/2^{-}$	713.4	$11/2^{-}$	E2			α(K)exp=0.00041 40

[†] From 1975Ma38 (α ,n γ), as for mult.

[‡] Consistent with $\alpha(K)$ exp and/or A₂, A₄ coef.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{115}_{50}$ Sn₆₅-2

