¹¹³Cd(α ,2n γ) 1999Lo04,1991Vi10

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 113, 2391 (2012)	1-Sep-2012			

¹¹⁵Sn Levels

1991Vi10:E(α)=27 MeV, enriched ¹¹³Cd 90.2%.

Measured: γ , $\gamma\gamma$, $\gamma(\theta)$.

1999Lo04: $E(\alpha)=27$ MeV, enriched ¹¹³Cd 90.2%. Measured lifetimes by using DSAM. Level scheme is mainly adopted from 1999Lo04. 1999Lo04 have used the previous work of 1998Sa30 and 1997Se02.

			_		
E(level)	J^{π}	$T_{1/2}$ [‡]	E(level)	J^{π}	$T_{1/2}^{\ddagger}$
0.0	$1/2^{+}$		2685.16 23	$17/2^{-}$	1.2 ps +5-3
497.30 8	$3/2^{+}$		2807.5 3	(17/2)	0.6 ps + 4 - 3
612.70 11	$7/2^+$		2842.3 <i>3</i>	$15/2^{-1}$	0.62 ps + 21 - 14
713.29 15	$11/2^{-}$		2938.0 <i>3</i>	$(17/2^{-})$	>1.7 ps
986.61 9	$5/2^{+}$	>1.4 ps	3003.4 <i>3</i>	19/2-	0.62 ps +35-21
1280.2 4	$3/2^{+}$	0.6 ps +4-3	3203.3 <i>3</i>	$17/2^{-}$	>1.0 ps
1416.80 11	$5/2^{+}$	<0.97 ps	3219.7 <i>3</i>	$17/2^{+}$	1.2 ps +4-3
1633.91 20	$3/2^{+}$	0.97 ps +35-14	3258	$19/2^{-}$	
1644	$(7/2^{-})$	_	3318.5 <i>3</i>	19/2-	1.3 ps +5-4
1785.61 23	$(9/2^{-})$	0.69 ps +21-14	3384.8 <i>3</i>	$(19/2^+)$	0.42 ps +21-14
1857.9 <i>3</i>	$7/2^{+}$	0.35 ps 7	3471.9	$19/2^{-}$	
1945.62 18	$(13/2^{-})$	1.3 ps +4-3	3509	$21/2^{+}$	
1996.30 23	$11/2^{+}$	1.04 ps +21-14	3665.9 4	$(23/2^+)$	
2024.82 23	$15/2^{-}$	1.0 ps +4-3	3839.1 4	$(25/2^+)$	
2084.26 18	$7/2^{+}$	0.90 ps +28-14	3878.4 4	$21/2^{-}$	0.8 ps +4-2
2207.8 4	$5/2^{+}$	1.0 ps 4	3958	$(23/2^+)$	
2346.2 10	$(11/2^{-})$	_	4028		
2592.18 24	$(15/2^{-})$	>2.4 ps	4059.5 4	$23/2^{-}$	>1.0 ps
2644.3 6	$15/2^{-}$		4271.9 5	$(27/2^+)$	
2653.22 22	$13/2^{-}$	1.2 ps +14-5			

[†] Based on previously established J^{π} and newly determined gamma multipolarities.

[‡] From 1999Lo04.

$\gamma(^{115}\text{Sn})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ
497.30	$3/2^{+}$	497.3 <i>1</i>	100	0.0	$1/2^{+}$	M1+E2	+0.21 2
612.70	$7/2^+$	115.5 <i>1</i>	100	497.30	$3/2^{+}$	E2	
713.29	$11/2^{-}$	100.7 <i>1</i>	100	612.70	$7/2^{+}$	M2	
986.61	$5/2^{+}$	373.8 <i>3</i>	6.1 14	612.70	$7/2^{+}$	M1+E2	-0.26 6
		489.3 2	100 6	497.30	$3/2^{+}$	M1+E2	+0.040 23
		986.5 <i>1</i>	37.0 8	0.0	$1/2^{+}$	E2	
1280.2	$3/2^{+}$	293.6 1	3.5 5	986.61	$5/2^{+}$	M1+E2	+0.23 +25-16
		668.1 <i>1</i>	3.5 8	612.70	$7/2^{+}$	E2	
		783.0 <i>1</i>	9.0 8	497.30	$3/2^{+}$	M1+E2	≈+0.77
		1280.1 <i>I</i>	100 14	0.0	$1/2^{+}$	M1+E2	-2.2 + 5 - 8
1416.80	$5/2^{+}$	136.7 <i>1</i>	1.7 7	1280.2	$3/2^{+}$	M1+E2	+0.17 15
		430.3 1	0.8 6	986.61	$5/2^{+}$	M1+E2	≈+0.55
		804.0 <i>1</i>	71	612.70	$7/2^{+}$	(M1+E2)	
		919.7 <i>1</i>	25.8 10	497.30	$3/2^{+}$	M1+E2	-0.17 3
		1416.8 2	100 3	0.0	$1/2^{+}$	E2	

¹¹³Cd(α,2nγ) **1999L004,1991Vi10** (continued)

					$\gamma(115)$	sn) (continue	ed)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I _γ ‡	E_f	${ m J}_f^\pi$	Mult. [†]	δ
1633.91	$3/2^{+}$	1021.1 2	11.2 12	612.70	$7/2^{+}$	E2	
	- 1	1136.5 2	25 6	497.30	$3/2^{+}$	(M1+E2)	
		1633.8 2	100 9	0.0	$1/2^{+}$	(M1+E2)	+0.7 5
1644	$(7/2^{-})$	931 [#]		713.29	$11/2^{-}$		
1785.61	$(9/2^{-})$	1072.4 2	100	713.29	$11/2^{-}$	(M1+E2)	-1.6 2
1857.9	7/2+	1360.6 <i>3</i>	100	497.30	3/2+	E2	
1945.62	$(13/2^{-})$	1232.3 1	100	713.29	$11/2^{-}$	M1+E2	+12 + 5 - 3
1996.30	11/2 '	1383.8 2	100	612.70	1/2'	E2 E2	
2024.82	13/2 7/2+	804 0 4	11 3	1280.2	$\frac{11/2}{3/2^+}$	E2 F2	
2004.20	1/2	1097.6.2	100.9	986.61	$5/2^+$	(M1+E2)	
		1471.8 4	66 6	612.70	$7/2^+$	(M1+E2)	
		1586.9 5	50 9	497.30	$3/2^{+}$	E2	
2207.8	$5/2^{+}$	1221.1 4	100 7	986.61	5/2+	(M1+E2)	
		1595.2	53 14	612.70	7/2+	(M1+E2)	
2346.2	$(11/2^{-})$	401.8 [#] 7	12 4	1945.62	$(13/2^{-})$		
		561.7 [#] 3	100 18	1785.61	$(9/2^{-})$		
		703 [#]		1644	$(7/2^{-})$		
		1634 [#]		713.29	$11/2^{-}$		
2592.18	$(15/2^{-})$	1878.6 2	100	713.29	$11/2^{-}$	(E2)	
2653.22	13/2-	306.0 6	72	2346.2	$(11/2^{-})$	(M1+E2)	
		628.2 6	54 5	2024.82	$15/2^{-}$	(M1+E2)	
		867.5 <i>3</i>	100 10	1785.61	(9/2 ⁻)	(M1+E2)	
260516	17/0-	1940.0 2	46 9	713.29	11/2-	(M1+E2)	10.2
2685.16	17/2	660.0 2	100 12	2024.82	15/2	M1+E2	+1.9 3
2807.5	(17/2)	739.4 2 862 4 2	100 12	1945.02	(13/2) (13/2)	(E2)	
2807.5	(17/2) $15/2^{-1}$	496.1.2	32.4	2346.2	$(13/2^{-})$ $(11/2^{-})$	E2	
20.210	10/2	817.3 2	100 10	2024.82	$15/2^{-1}$	(M1+E2)	
		897.7 2	22 4	1945.62	$(13/2^{-})$	(M1+E2)	
2938.0	$(17/2^{-})$	252.8 7	33 15	2685.16	$17/2^{-}$	(M1+E2)	
		346.0 5	30 15	2592.18	$(15/2^{-})$	(M1+E2)	
		913.1 4	100 50	2024.82	15/2-	(M1+E2)	
2002 4	10/2-	992.3 3	66 33	1945.62	(13/2)	(E2)	
5005.4	19/2	078 5 2	100	2085.10	$\frac{17/2}{15/2^{-1}}$	F2	
3203.3	$17/2^{-}$	360.1.5	39.3	2842.3	$15/2^{-1}$	(M1+E2)	
020010	1//=	550.1 3	100 3	2653.22	$13/2^{-}$	E2	
		559	11 2	2644.3	$15/2^{-}$	(M1+E2)	
		1178.3 <i>3</i>	55 6	2024.82	$15/2^{-}$	(M1+E2)	
		1257.8 <i>3</i>	21 3	1945.62	$(13/2^{-})$	E2	
3219.7	$17/2^{+}$	1194.5 2	100	2024.82	$15/2^{-}$	E1	
3258	19/2-	255 #		3003.4	19/2-		
		573 #		2685.16	$17/2^{-}$		
		1233 [#]		2024.82	$15/2^{-}$		
3318.5	$19/2^{-}$	115.2 2	< 0.2	3203.3	$17/2^{-}$	(M1+E2)	
		475.4 2	5.0 3	2842.3	$15/2^{-1}$	(E2)	
		674.4 2	3.0 5	2644.3	$15/2^{-15/2^{-15/2^{-15/2^{-15}}}}$	E2 E2	
3381 0	$(10/2^{+})$	1295.2 2	20 2 12	2024.82	13/2 17/2 ⁺	E2 (M1+E2)	0.05.5
5504.0	(17/2)	576.6.5	20.5 12	2807 5	(17/2)	(M1+E2) (M1+F2)	-0.05 5
		700.1 2	100 5	2685.16	$17/2^{-}$	(E1)	
3471.9	19/2-	629 [#]		2842.3	$15/2^{-}$. ,	
	- , =				- / •		

$\gamma(^{115}$ Sn) (continued)

Continued on next page (footnotes at end of table)

			¹¹³ Cd(a	,2n γ)	1999Lo04,19	91Vi10 (conti	in
				<u> </u>	(¹¹⁵ Sn) (contin	nued)	
\mathbf{J}_i^{π}	Eγ	Iγ‡	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	
19/2-	1446 [#]		2024.82	15/2-			
$21/2^+$	506 [#]	100	3003.4	$19/2^{-}$	$(\mathbf{M}1 + \mathbf{E}2)$	0.06.4	

nued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [†]	δ
3471.9	19/2-	1446 [#]		2024.82	15/2-		
3509	$21/2^{+}$	506 [#]		3003.4	$19/2^{-}$		
3665.9	$(23/2^+)$	156.9 <i>1</i>	100	3509	$21/2^{+}$	(M1+E2)	+0.06 4
3839.1	$(25/2^+)$	173.2 2	100 5	3665.9	$(23/2^+)$	(M1+E2)	+0.07 3
		330.1 4	52	3509	$21/2^{+}$		
3878.4	$21/2^{-}$	560.6 <i>3</i>	32 <i>3</i>	3318.5	19/2-	(M1+E2)	
		675.1 <i>3</i>	100 5	3203.3	$17/2^{-}$	E2	
3958	$(23/2^+)$	574		3384.8	$(19/2^+)$		
4028		644		3384.8	$(19/2^+)$		
4059.5	$23/2^{-}$	181.0 2	3.4 4	3878.4	$21/2^{-}$	(M1+E2)	
		588.2 2	6.6 5	3471.9	$19/2^{-}$	E2	
		741.6 2	100 4	3318.5	$19/2^{-}$	E2	
		801.4 2	4.7 5	3258	$19/2^{-}$	(E2)	
		1055.9 2	22 1	3003.4	$19/2^{-}$	E2	
4071.0	$(07/0\pm)$	422.0.2	100	2020 1	$(0, \overline{1}, 0, \pm)$	$(\mathbf{A} \mathbf{A} 1 + \mathbf{D} \mathbf{A})$	0 15 7

4271.9 $(27/2^+)$ 432.8 3 100 3839.1 (25/2⁺) (M1+E2) +0.15 7

[†] From experimental A₂ and A₄ and derived from a fitting of the distribution.
[‡] Photon branching from each level.
[#] From 1991Vi10.

¹¹³Cd(α,2nγ) 1999Lo04,1991Vi10

Level Scheme

Intensities: Relative photon branching from each level

 $^{115}_{50}$ Sn₆₅

4

¹¹³Cd(α,2nγ) 1999Lo04,1991Vi10

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{115}_{50}{
m Sn}_{65}$

5