¹¹⁵Te ε decay (6.7 min) 1974Ch51,1975WiZX,1976Wi11

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jean Blachot	NDS 113, 2391 (2012)	1-Sep-2012	

Parent: ¹¹⁵Te: E<20; $J^{\pi}=(1/2)^+$; $T_{1/2}=6.7 \text{ min } 4$; $Q(\varepsilon)=4940 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0 ¹¹⁵Te- $\%\varepsilon+\%\beta^+$ decay: M3 isomeric transition unobserved.

 γ spectra are for mass separated ¹¹⁵Te(5.8-min + 6.7-min) mixtures. Isomer assignments are from T_{1/2}(γ), $\gamma\gamma$ -coin, (γ)(γ^{\pm})-coin (1975WiZX).

See drawings for partial-level scheme and preliminary intensity balance.

1974Ch51 analyzed dependence of $I\gamma(6.7\text{-min }770\gamma)/I\gamma(5.8\text{-min }1380\gamma)$ ratio on $E\alpha$ via $^{112}Sn(\alpha,n)$ E=12-29 MeV; low J for 770 γ parent deduced.

¹¹⁵Sb Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	\mathbf{J}^{π}	E(level)	J^{π}
0.0 723.6 770.4	5/2+ 7/2+ 1/2+	1071.7 1098.7 1504.2	3/2+ 7/2+ (3/2)+	2074.4 2104.4 2215.1	(3/2) ⁺ 3/2 ⁺	2659.9 2709.8 2764.0	$(3/2)^+$ $(3/2)^+$ $1/2^+, 3/2^+$

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(2.20 \times 10^3 \ 3)$	2764.0		≈7	≈4.8	≈7	ε K= 0.774; ε L= 0.1017; ε M+= 0.02649
$(2.25 \times 10^3 \ 3)$	2709.8		≈5	≈5.0	≈5	ε K= 0.758; ε L= 0.0996; ε M+= 0.02594
$(2.30 \times 10^3 \ 3)$	2659.9	≈1	≈11	≈4.6	≈12.0	av E β = 380 30; ε K= 0.802 14; ε L= 0.1056 19; ε M+= 0.0275 5
$(2.74 \times 10^3 \ 3)$	2215.1	≈2	≈7	≈5.0	≈9.0	av $E\beta = 580 \ 30; \ \varepsilon K = 0.664 \ 24; \ \varepsilon L = 0.087 \ 3; \ \varepsilon M + = 0.0226 \ 8$
$(2.86 \times 10^3 \ 3)$	2104.4	≈2	≈5	≈5.2	≈7.0	av E β = 630 30; ε K= 0.621 24; ε L= 0.081 4; ε M+= 0.0211 9
$(2.89 \times 10^3 \ 3)$	2074.4	≈2	≈4	≈5.3	≈6.0	av $E\beta = 640 \ 30; \ \varepsilon K = 0.609 \ 24; \ \varepsilon L = 0.080 \ 4; \ \varepsilon M + = 0.0207 \ 9$
$(3.46 \times 10^3 \ 3)$	1504.2	≈3	≈3	≈5.7	≈6.0	av E β = 900 30; ε K= 0.393 21; ε L= 0.051 3; ε M+= 0.0133 7
$(3.89 \times 10^3 \ 3)$	1071.7	≈10	≈4	≈5.6	≈14.0	av $E\beta = 1100 \ 30; \ \varepsilon K = 0.271 \ 15; \ \varepsilon L = 0.0352 \ 19; \ \varepsilon M + = 0.0092 \ 5$
$(4.19 \times 10^3 \ 3)$	770.4	≈26	≈8	≈5.4	≈34.0	av E β = 1240 30; ϵ K= 0.210 11; ϵ L= 0.0273 15; ϵ M+= 0.0071 4

[†] Absolute intensity per 100 decays.

$\gamma(^{115}\text{Sb})$

I γ normalization: for I(γ +ce)=100 to g.s.; negligible IT decay is assumed.

Relative activation yield of ¹¹⁵Te isomers (6.7 min/5.8 min) differs by a factor of 2 (1972Sh37 vs 1975WiZX), which is useful in parent assignments.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
^x 303.1 4	0.9 <i>3</i>				
405.9 5	0.8 <i>3</i>	1504.2	$(3/2)^+$	1098.7	$7/2^{+}$
548.7 2	1.2 2	2764.0	$1/2^+, 3/2^+$	2215.1	$3/2^{+}$

Continued on next page (footnotes at end of table)

¹¹⁵₅₁Sb₆₄-2

¹¹⁵₅₁Sb₆₄-2

¹⁵ Te ε decay (6.7 min)	1974Ch51,1975WiZX,1976Wi11 (continued)
--	--

$\gamma(^{115}\text{Sb})$ (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
555.7 3	0.55 12	2659.9	$(3/2)^+$	2104.4	$(3/2)^+$	
570.0 14	0.7 5	2074.4		1504.2	$(3/2)^+$	
^x 610.6 2	1.3 2					
689.4 <i>3</i>	1.3 3	2764.0	$1/2^+, 3/2^+$	2074.4		
723.6 1	6 CA	723.6	7/2+	0.0	$5/2^{+}$	I_{γ} : calc to balance summed I_{γ} 's to 723.6 level.
770.4 <i>1</i>	11.4 4	770.4	$1/2^{+}$	0.0	$5/2^+$	\dot{E}_{γ} : other: 770.44 5 (1974Ch51).
780.5 4	0.7 2	1504.2	$(3/2)^+$	723.6	$7/2^{+}$	
^x 1031.9 2	2.6 3					
1071.7 <i>3</i>	4.3 <i>3</i>	1071.7	3/2+	0.0	$5/2^{+}$	E_{γ} : other: 1071.64 <i>15</i> (1974Ch51).
						I_{γ} : from $I_{\gamma}(1072\gamma) = 5.1 \ 4 \ (^{115}\text{Te isomer} + \text{g.s. decays}) - I_{\gamma}(g.s.) = 0.8$.
1098.7 <i>1</i>	3 CA	1098.7	$7/2^{+}$	0.0	$5/2^{+}$	
1115.3 6	0.7 3	2215.1	3/2+	1098.7	$7/2^+$	
1143.4 5	0.5 3	2215.1	3/2+	1071.7	$3/2^{+}$	
1155.7 4	0.9 <i>3</i>	2659.9	$(3/2)^+$	1504.2	$(3/2)^+$	
^x 1184.9 8	0.2 1					
1205.5 4	1.1 3	2709.8	$(3/2)^+$	1504.2	$(3/2)^+$	
^x 1279.3 2	3.4 4					E_{γ} : others: 1273.3 5 (1974Ch51), 1277 1 (1972Sh37).
1350.8 2	2.6 3	2074.4		723.6	$7/2^{+}$	
^x 1408.1 3	1.1 2					
1491.7 <i>3</i>	1.1 2	2215.1	3/2+	723.6	7/2+	
1504.1 2	3.4 <i>3</i>	1504.2	$(3/2)^+$	0.0	$5/2^{+}$	E_{γ} : other: 1504.50 <i>15</i> (1974Ch51).
1561.7 4	1.2 3	2659.9	$(3/2)^+$	1098.7	7/2+	•
^x 1654.8 4	2.1 3					
1936.0 <i>3</i>	1.1 2	2659.9	$(3/2)^+$	723.6	$7/2^{+}$	
1986.2 5	0.42 15	2709.8	$(3/2)^+$	723.6	$7/2^{+}$	
2104.4 2	2.8 3	2104.4	$(3/2)^+$	0.0	$5/2^{+}$	
2215.3 4	1.9 <i>3</i>	2215.1	3/2+	0.0	$5/2^{+}$	E_{γ} : other: 2216.0 <i>3</i> (1974Ch51).
2659.9 8	0.18 5	2659.9	$(3/2)^+$	0.0	$5/2^{+}$	

[†] For absolute intensity per 100 decays, multiply by \approx 3.0. ^{*x*} γ ray not placed in level scheme.

 $^{115}_{51}$ Sb₆₄-3

¹¹⁵Te ε decay (6.7 min) 1974Ch51,1975WiZX,1976Wi11

