$^{115}_{51}$ Sb₆₄-1

Adopted Levels, Gammas

		Type	Author	History	Literature Cutoff Date			
		Full Evaluation	Iean Blachot	NDS 113 2391 (2012)	1 Sep 2012			
			Jean Diachot	1105 115,2591 (2012)	1-50-2012			
$Q(\beta^{-}) = -4.94 \times 1$ Note: Current e	0^3 4; S(n)= valuation ha	1.058×10^4 3; S(p)=37 s used the following Q	35 16; $Q(\alpha) = -$ 2 record -4.94E	1037 <i>17</i> 2012Wa38 E+3 3 <i>1</i> .058×10 ⁴ 33733	16-1035 16 2011AuZZ.			
				¹¹⁵ Sb Levels				
			Cross R	eference (XREF) Flags				
		A 113 B 114 C 115 D 115	$ \begin{array}{rcl} & E & {}^{115}\text{Te } \varepsilon \text{ de} \\ & F & {}^{115}\text{Te } \varepsilon \text{ de} \\ \hline & 59 \text{ ns} & G & (\text{HI},\text{xn}\gamma) \\ 2 \text{ ns} & H & {}^{114}\text{Sn}(\text{p,p}) \end{array} $	decay (5.8 min) decay (6.7 min)) p),(p,n) IAR				
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments			
0.0	5/2+	32.1 min 3	ABCDEFG	$%ε+%β^+=100$ μ=+3.46 <i>l</i> ; Q=-0.36 6 J ^π : atomic beam, L=2 i μ: ¹¹⁹ Sb g.s. analogous <i>19</i> (1992BaZV). T _{1/2} : unweighted av: 3: (1968Ra27), 32.3 min 1961Fi05, 1962Se03.	(1989Ra17) n (³ He,d). to ¹¹⁵ Sb g.s. (1968Ja05). Other: +3.457 2.1 min <i>3</i> (1976Wi10), 31.8 min <i>2</i> n 3 (1967Ha27). Others: 1958Se59,			
723.583 <i>20</i> 770.40 <i>10</i>	$7/2^+$ $1/2^+$	4.4×10^2 fs + 37-15	ABCDEFG AB F	J ^{π} : M1 transition to 5/2 J ^{π} : L=0 (³ He d).	$^{+}$ g.s.; L=4 (³ He,d).			
1071 72 10	(2/2)+			$T_{1/2}$: from 1995Bu15, 1	DSA method.			
10/1./3 18	$(3/2)^{+}$	93 Is $+21-14$	AB EF	J^{A} : L=2 (³ He,d); log ft ² T _{1/2} : from 1995Bu15, 1	$\approx 5.6 \text{ via J(initial)} = 1/2^{+}$. DSA method.			
1098.63 <i>3</i>	7/2+	0.58 ps 8	A EFG	J^{π} : M1(+E2) γ ray to 5 1098 $\gamma(\theta)$. T _{1/2} : from 1995LoZZ, +30/-1/0 (1995Bul	$/2^+$ state, γ ray from $9/2^+$ state; 1998Lo11, DSA method. Other: 320 fs			
1300.21 5	11/2-	6.2 ns <i>3</i>	ABCDE G	%IT=100 μ =+5.53 8 (1989Ra17) T _{1/2} : from 1978Su05, 1 (1977Br08), 7.0 ns 4 J ^{π} : L=5 (³ He,d); E3 an states, respectively. Enhanced M2 and E3 d phonon admistures i	$1300\gamma(t)$ pulsed beam. Others: 6.7 ns 4 (1980Le05). d M2 deexcitations to 5/2 ⁺ and 7/2 ⁺ eexcitations are attributed to M2 and E3 both initial and final states (1978Su05)			
1326.85 4	9/2+	1.21 ps +24-14	A E G	$T_{1/2}$: from 1998Lo11, 1 J^{π} : stretched E2 γ ray t	1995LoZZ. Other: $<5 \text{ ps} (1977Br08).$ o $5/2^+$ state. M1 to $7/2^+$ state.			
1380.58 [#] 3	9/2+	0.97 ps 28	A EG	$T_{1/2}$: from 1998Lo11, 1 J ^{π} : stretched E2 γ ray t E(level): analogous 9/2 respectively, at 1461,	1995LoZZ. Other: <5 ps (1977Br08). o 5/2 ⁺ state, M1+E2 to 7/2 ⁺ state. ⁺ bandheads in ¹¹³ Sb, ¹¹⁷ Sb, ¹¹⁹ Sb are, 1160, 971 keV; see 1975Ga11, 1979Sh03.			
1504.17 16	$(3/2)^+$	106 fs 6	AB F	J^{π} : L=2 (³ He,d); log ft ²	≈ 5.7 from $(1/2)^+$.			
1736.21 19	$(5/2^+)$		A E	J^{π} : 1013 $\gamma(\theta)$, 1013 γ ex	cit.			
1755.03 [#] 5 1937.17 <i>14</i> 2074.39 <i>18</i>	$(11/2)^+$	0.90 ps +35-14	AEG AE F	J ^{π} : M1+E2 γ rays to 9/ T _{1/2} : from 1995LoZZ.	2^+ states; 374γ , 428γ excit, band member.			
2092.54 [#] 11	$(13/2)^+$		A G	J ^{π} : (E2) γ ray to 9/2 ⁺ s	state, M1+E2 to $(11/2)^+$ state, band			

Continued on next page (footnotes at end of table)

¹¹⁵Sb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XI	REF	Comments
					member.
2104.36 18	$(3/2)^+$		В	F	XREF: B(2091).
2215 11 70	$(3/2)^+$		R	F	J [*] : L=2 (^o He,d); log $ft \approx 5.2$ Irom (1/2) ⁺ . I ^{π} : L =2 (³ He d): log $ft \approx 5.0$ via L(initial)=(1/2) ⁺
2315.97 12	$(3/2)^{-}$		A	G	$J^{\pi}: M_1+E_2 \gamma$ ray to $11/2^{-1}$ state: 1016 γ excit.
2323.43 5	$(9/2)^+$			E	J^{π} : M1 γ to $(11/2)^+$ and log $ft=4.9$ from $7/2^+$.
2389.02 8	$(7/2)^+$			E	J^{π} : (E2) γ to $(11/2)^+$ and log <i>ft</i> =4.8 from 7/2 ⁺ .
2457.58 [#] 15	(15/2)+		A	G	J^{π} : (E2) γ ray to (11/2) ⁺ state, M1+E2 to (13/2) ⁺ state; 365 γ excit.
2516.91 [@] 9	15/2-	0.42 ps +21-14	A C	G	J ^{π} : stretched E2 γ ray to 11/2 ⁻ state; 1217 γ excit. Interpreted as $(\pi d5/2)$ coupled to 5 ⁻ state of ¹¹⁴ Sn core; see 1977Br08.
2638.42 9	15/2-	>2.1 ps	A C	G	$T_{1/2}$: from 1998Lo11 in (α ,2n γ). J^{π} : stretched E2 γ ray to 11/2 ⁻ state, M1+E2 to (13/2) ⁻ state;
2659.93 <i>18</i> 2688.27 <i>16</i>	$(3/2)^+$ $(5/2,7/2)^+$			F	J^{π} : γ ray to $7/2^+$ state; log $ft \approx 4.6$ via J(initial)= $(1/2)^+$. J^{π} : log $ft=5.6$ from $7/2^+$, γ to $3/2^+$.
2709.7 4	$(3/2)^+$			F	J^{π} : log ft=5.0 from $(1/2)^+$. γ to $7/2^+$.
2763.81 23	$(1/2, 3/2)^+$			F	J^{π} : log <i>ft</i> =4.8 from 1/2 ⁺ .
2796.26 9	$(19/2)^{-}$	159 ns <i>3</i>	A C	G	%IT=100
					μ = +2.34 (1969Ka17) μ : others: 2.73 4 (1979Fa03), 2.76 5 (1979Sh03), 2.68 6 (1979Ka02)
					$T_{1/2}$: 159 ns 3 (1979Sh03) 279 γ (t) pulsed beam. Others: 156 ns 3 (1977Br08) 157 ns 5 (1979Ko02)
					J^{π} : stretched E2 γ rays to $15/2^{-}$ states; 279 γ excit. Interpreted as
					$(\pi \text{ d5/2})$ coupled to 7 ⁻ state of ¹¹⁴ Sn core; see 1979Fa03, 1977Br08.
2803.4 3	$(17/2)^{-}$		Α		J^{π} : E1 transition to $(15/2)^+$ state; 346 γ excit.
2838.40 [#] 16	$(17/2)^+$		Α	G	J ^{π} : E2 γ ray to (13/2) ⁺ state, M1+E2 to (15/2) ⁺ state; 381 γ excit.
2960.66 [@] 12	19/2-		Α	G	J^{π} : E2 γ ray to $15/2^{-}$ state; 444γ excit.
3003.64 14	$(21/2)^{-}$		A	G	J^{π} : M1+E2 γ ray to 19/2 ⁻ state; 207 γ excit.
3098	(19/2)		A		
3255.45" 19	(19/2)+	1.1 ps +10-5	Α	G	J^{π} : E2 γ ray to $(15/2)^+$ state, M1+E2 to $(17/2)^+$ state; 417 γ excit. T _{1/2} : from 1998Lo11 in $(\alpha, 2n\gamma)$.
3445.47 16	(23/2) ⁻		A	G	J^{n} : M1+E2 γ ray to 21/2 ⁻ state; 442 γ excit.
3542.37 16	$\frac{23}{2^{-}}$		A	G	J ^{π} : stretched E2 γ ray to (19/2) ⁻ state; 582 γ excit.
3659 60 17	$(21/2)^+$	4.1 ns 2	Δ	G	%IT=100
				J	T _{1/2} : 4.1 ns 2 unweighted av: 4.17 ns <i>14</i> (1973FrYL), 4.0 ns 2 (1977Br08) (207 γ ,214 γ)(t). J ^{π} : E1 transition to (23/2) ⁻ state; HF(E1); 214 γ excit. Analog: ¹¹⁷ Sb at 3130 keV, T _{1/2} =340 μ s, $J^{\pi}=25/2^+$, $\mu=+1.500$ 9, Q=0.75 9; see 1989Ra17. Interpreted as (π d5/2) coupled to 10 ⁺ state of ¹¹⁴ Sp core; see 1977Br08, 1970Sr03
3692.63 [#] 20	$(21/2)^+$		A	G	J^{π} : M1+E2 γ ray to (19/2) ⁺ state, (E2) to (17/2) ⁺ state; 437 γ
2702.204.4	(22/2-)			~	excit.
$5/92.5^{\circ} 4$ 4111.8 ^{<i>a</i>} 5	$(25/2^{-})$			G	
4120.0 [#] 3	$(23/2^+)$			c	
$4262.7^{@}$ 1	(23/2)			G	
4283.0 <i>4</i> 4344 6 <i>4</i>	21/2			G	
				0	

¹¹⁵Sb Levels (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
	4492.3 ^{<i>a</i>} 5	$(27/2^{-})$	G	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4510.8 [#] 3	$(25/2^+)$	G	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4551.13 ^{&} 25	$23/2^{-}$	G	
$\begin{array}{rcrcrcrc} 4483.4^{\#} 4 & (27)^{+} & {\bf G} \\ 4900.6^{\#} 8 & (29)^{-2} & {\bf G} \\ 4985.1 5 & {\bf G} \\ 5034.8^{\frac{1}{2}} 3 & 27/2^{-} & {\bf G} \\ 5100.1 5 & (31/2^{-}) & {\bf G} \\ 5245.0^{\frac{1}{2}} 4 & (29)^{+} & {\bf G} \\ 5330.7 4 & {\bf G} \\ 5333.1^{\#} & (31/2^{-}) & {\bf G} \\ 5635.7^{\#} 4 & (31/2^{-}) & {\bf G} \\ 5635.7^{\#} 4 & (31/2^{+}) & {\bf G} \\ 5734.1 5 & {\bf G} \\ 5784.5 7 & {\bf G} \\ 6059.2^{\#} 4 & {\bf (32)}^{-} & {\bf G} \\ 6059.2^{\#} 4 & {\bf (32)}^{-} & {\bf G} \\ 6349.0^{\frac{1}{2}} 5 & {\bf 35}/2^{-} & {\bf G} \\ 6431.7^{\#} 5 & {\bf (35)}^{+} & {\bf G} \\ 71172.3^{\frac{1}{2}} 6 & {\bf (39)}^{-} & {\bf G} \\ 8184.5^{\frac{1}{2}} 7 & {\bf (39)}^{-} & {\bf G} \\ 8184.5^{\frac{1}{2}} 7 & {\bf (39)}^{-} & {\bf G} \\ 8184.5^{\frac{1}{2}} 7 & {\bf (39)}^{-} & {\bf G} \\ 8184.5^{\frac{1}{2}} 7 & {\bf (39)}^{-} & {\bf G} \\ 8184.5^{\frac{1}{2}} 7 & {\bf (39)}^{-} & {\bf G} \\ 9151.1^{\frac{1}{2}} 8 & {\bf (47)}^{-} & {\bf G} \\ 9151.1^{\frac{1}{2}} 8 & {\bf (47)}^{-} & {\bf G} \\ 10083 15 & 1/2 & {\bf H} & {\bf IAS, \Gamma=38 \ keV, \Gamma(p)=8 \ keV, L=0. \\ Analog of ^{115}Sn 1/2^{+} \ g.s. \\ 10658 15 & {\bf 3/2}^{+} & {\bf H} & {\bf IAS, \Gamma=30 \ keV, \Gamma(p)=3 \ keV, L=1. \\ Analog of ^{115}Sn 3/2^{+} \ 497.4eV \ state. \\ 1065 15 & {\bf 5/2}^{+} & {\bf H} & {\bf IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 572^{+}, 613.4eV \ state. \\ 1065 15 & {\bf 5/2}^{+} & {\bf H} & {\bf IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 572^{+}, 874.eV \ state. \\ 1065 15 & {\bf 5/2}^{+} & {\bf H} & {\bf IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 3/2^{+}, 974.eV \ state. \\ 1065 15 & {\bf 5/2}^{+} & {\bf H} & {\bf IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 5772^{+}, 874.eV \ state. \\ 105 115 & {\bf 5/2}^{+} & {\bf H} & {\bf IAS, \Gamma=50 \ keV, T(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 5772^{+}, 874.eV \ state. \\ 105 115 & {\bf 5/2}^{+} & {\bf H} & {\bf IAS, \Gamma=50 \ keV, T(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 5772^{+}, 874.eV \ state. \\ 105 115 & {\bf 5/2}^{+} & {\bf$	4732.9 4		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4885.4 [#] 4	$(27/2^+)$	G	
4985.1.5 G 5034.8 k 3 27/2" G 5109.6 6 5 31/2" G 5150.1.5 (31/2") G 5245.0 tt 4 (29/2") G 5330.7 4 G 5333.1 4 9 (31/2") G 5632.6 kt 4 31/2" G 5635.7 tt 4 (31/2") G 5635.7 tt 4 (31/2") G 5703.0 4 9 (33/2") G 6029.5 tt 4 (33/2") G 6049.2 ct 6 (35/2") G 6340.0 kt 5 35/2" G 6431.7 tt 5 (35/2") G 6431.7 tt 5 (37/2") G 8104.5 kt 7 (39/2") G 9151.1 kt 8 (47/2") G 9151.1 kt 8 (47/2") G 10083 15 1/2 H IAS, T=38 keV, T(p)=8 keV, L=0. Analog of ¹¹⁵ Sn 1/2* gs. 10305.9 kt 9 (51/2") G G 10589 15 3/2" H IAS, T=38 keV, T(p)=5 keV, L=0. Analog of ¹	4900.6 ^{<i>a</i>} 8	$(29/2^{-})$	G	
5034.8 ⁴ 3 27/2 ⁻ G 5109.6 ⁶ 5 31/2 ⁻ G 5150.1 5 (31/2 ⁻) G 5245.0 [#] 4 (29/2 ⁺) G 5330.7 4 G 5333.1 ⁴ 9 (31/2 ⁻) G 5632.6 ⁴ 4 31/2 ⁻ G 5635.7 [#] 4 (31/2 ⁺) G 5794.1 5 G 5793.0 ⁴ 9 (33/2 ⁻) G 6069.2 ⁶ 6 (35/2 ⁻) G 6069.2 ⁶ 6 (35/2 ⁻) G 6431.7 [#] 5 (35/2 ⁺) G 6485.7 [#] 5 (37/2 ⁺) G 6485.7 [#] 5 (37/2 ⁺) G 7172.3 ⁴ 6 (39/2 ⁻) G 8104.5 ⁴ 7 (43/2 ⁻) G 8104.5 ⁴ 7 (43/2 ⁻) G 9151.1 ⁴ 8 (47/2 ⁻) G 9151.1 ⁵ 3/2 ⁺ H IAS, Γ=38 keV, Γ(p)=8 keV, L=0. Analog of ¹¹⁵ Sn 1/2 ⁺ g.s. 10359.9 ⁴ 9 (51/2 ⁻) G 10589 15 3/2 ⁺ H IAS, Γ=36 keV, Γ(p)=5 keV, L=2. Analog of ¹¹⁵ Sn 7/2 ⁺ , 613.keV state. 10698 15 7/2 ⁺ H IAS, Γ=50 keV, Γ(p)=3 keV, L=2. Analog of ¹¹⁵ Sn 7/2 ⁺ , 613.keV state.	4985.1 5		G	
$ \begin{split} & 109.6^{60} 5 & 31/2^- & G \\ & 5150.1 5 & (31/2^-) & G \\ & 5330.7 4 & G \\ & 5333.1^{40} & (31/2^+) & G \\ & 5333.1^{40} & (31/2^+) & G \\ & 5632.6^{46} & 4 & 31/2^- & G \\ & 5635.7^{\#} & (31/2^+) & G \\ & 5704.1 5 & G \\ & 5704.5 5 & G \\ & 5793.0^{40} & (33/2^+) & G \\ & 6009.2^{60} & G & (35/2^-) & G \\ & 6009.2^{60} & G & (35/2^-) & G \\ & 6349.0^{46} & 5 & 35/2^- & G \\ & 6431.7^{\#} & (33/2^+) & G \\ & 6885.7^{\#} & S & (37/2^+) & G \\ & 6885.7^{\#} & S & (37/2^+) & G \\ & 61431.7^{\#} & (33/2^-) & G \\ & 6885.7^{\#} & S & (37/2^+) & G \\ & 71120.8^{40} & T & (39/2^-) & G \\ & 8104.5^{40} & T & (43/2^-) & G \\ & 8104.5^{40} & T & (43/2^-) & G \\ & 8104.5^{40} & T & (43/2^-) & G \\ & 1083 15 & 1/2 & H & 1AS, \Gamma=38 \text{ keV}, \Gamma(p)=8 \text{ keV}, L=0. \\ & & & & & & & & & & & & & & & & & & $	5034.8 ^{x} 3	$27/2^{-}$	G	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5109.6 ^{@} 5	31/2-	G	
$\begin{array}{rcl} 5245.0^{m} 4 & (29/2^{-}) & {\sf G} \\ 5330.7 4 & {\sf G} \\ 5330.7 4 & {\sf G} \\ 5333.1^{d} 9 & (31/2^{-}) & {\sf G} \\ 5632.6^{k} 4 & 31/2^{-} & {\sf G} \\ 5635.7^{\#} 4 & (31/2^{+}) & {\sf G} \\ 5794.5 & {\sf G} \\ 5794.5 & {\sf G} \\ 5793.0^{d} 9 & (33/2^{-}) & {\sf G} \\ 6009.2^{@} 6 & (35/2^{-}) & {\sf G} \\ 6069.2^{@} 6 & (35/2^{-}) & {\sf G} \\ 6349.0^{k} 5 & 35/2^{-} & {\sf G} \\ 6431.7^{\#} 5 & (35/2^{+}) & {\sf G} \\ 6885.7^{\#} 5 & (37/2^{+}) & {\sf G} \\ 6885.7^{\#} 5 & (37/2^{+}) & {\sf G} \\ 71120.8^{@} 7 & (39/2^{-}) & {\sf G} \\ 7172.3^{k} 6 & (39/2^{-}) & {\sf G} \\ 8104.3^{k} 7 & (43/2^{-}) & {\sf G} \\ 8184.3^{k} 7 & (43/2^{-}) & {\sf G} \\ 8184.3^{k} 7 & (43/2^{-}) & {\sf G} \\ 8184.5^{k} 6 & (39/2^{-}) & {\sf G} \\ 1083 15 & 1/2 & {\sf H} & IAS, \Gamma=38 \ keV, \Gamma(p)=8 \ keV, L=0. \\ Analog of ^{115}Sn 1/2^{+} g.s. \\ 1035.9^{k} 9 & (51/2^{-}) & {\sf G} \\ 10589 15 & 3/2^{+} & {\sf H} & IAS, \Gamma=36 \ keV, \Gamma(p)=5 \ keV, L=2. \\ Analog of ^{115}Sn 3/2^{+}, 497\text{-}kV \ state. \\ 1065 15 & 5/2^{+} & {\sf H} & IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 7/2^{+}, 613\text{-}kV \ state. \\ 1065 15 & 5/2^{+} & {\sf H} & IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 7/2^{+}, 613\text{-}kV \ state. \\ 1065 15 & 5/2^{+} & {\sf H} & IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 7/2^{+}, 613\text{-}kV \ state. \\ 1065 15 & 5/2^{+} & {\sf H} & IAS, \Gamma=50 \ keV, \Gamma(p)=1 \ keV, L=2. \\ Analog of ^{115}Sn 7/2^{+}, 987\text{-}kV \ state. \\ \end{array}$	5150.1 5	$(31/2^{-})$	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5245.0 ^{^m} 4	$(29/2^+)$	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5330.74 5333 1 ^{<i>a</i>} 0	$(31/2^{-})$	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5632 6 × 1	(31/2) $31/2^{-}$	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5632.0 + 5625.7 \pm 4$	$(21/2^{+})$	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5704 1 5	(31/2)	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5784.5 5		G	
	5793.0 ^a 9	$(33/2^{-})$	G	
	6029.5 [#] 4	$(33/2^+)$	G	
	6069.2 [@] 6	$(35/2^{-})$	G	
	6349.0 <mark>&</mark> 5	35/2-	G	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6431.7 [#] 5	$(35/2^+)$	G	
7120.8 ^(a) 7 $(39/2^-)$ G 7172.3 ^{&} 6 $(39/2^-)$ G 8104.5 ^{&} 7 $(43/2^-)$ G 8256.8 ^(a) 12 $(43/2^-)$ G 9151.1 ^{&} 8 $(47/2^-)$ G 10083 15 1/2 H IAS, $\Gamma=38$ keV, $\Gamma(p)=8$ keV, L=0. Analog of ¹¹⁵ Sn 1/2 ⁺ g.s. 10305.9 ^{&} 9 $(51/2^-)$ G 10589 15 $3/2^+$ H IAS, $\Gamma=36$ keV, $\Gamma(p)=5$ keV, L=2. Analog of ¹¹⁵ Sn 3/2 ⁺ , 497-keV state. 10698 15 $7/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=3$ keV, L=(4). Analog of ¹¹⁵ Sn 7/2 ⁺ , 613-keV state. 11065 15 $5/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, L=2. Analog of ¹¹⁵ Sn 5/2 ⁺ , 987-keV state.	6885.7 [#] 5	$(37/2^+)$	G	
$7172.3^{\&}_{0}$ $(39/2^{-})$ G $8104.5^{\&}_{0}$ $(43/2^{-})$ G $8256.8^{@}$ 12 $(43/2^{-})$ G $9151.1^{\&}_{0}$ $(47/2^{-})$ G 10083 15 $1/2$ H $1AS, \Gamma=38$ keV, $\Gamma(p)=8$ keV, $L=0.$ Analog of $^{115}Sn 1/2^{+}$ g.s. $10305.9^{\&}_{0}$ 9 $(51/2^{-})$ G 10589 15 $3/2^{+}$ H $1AS, \Gamma=36$ keV, $\Gamma(p)=5$ keV, $L=2.$ Analog of $^{115}Sn 3/2^{+}$, 497 -keV state. 10698 15 $7/2^{+}$ H $1AS, \Gamma=50$ keV, $\Gamma(p)=3$ keV, $L=(4).$ Analog of $^{115}Sn 7/2^{+}$, 613 -keV state. 11065 15 $5/2^{+}$ H $1AS, \Gamma=50$ keV, $\Gamma(p)=1$ keV, $L=2.$ Analog of $^{115}Sn 5/2^{+}$, 987 -keV state.	7120.8 [@] 7	$(39/2^{-})$	G	
$8104.5^{\&}$ 7 $(43/2^-)$ G $8256.8^{@}$ 12 $(43/2^-)$ G $9151.1^{\&}$ 8 $(47/2^-)$ G 10083 15 $1/2$ H IAS, $\Gamma=38$ keV, $\Gamma(p)=8$ keV, L=0. Analog of ¹¹⁵ Sn $1/2^+$ g.s. $10305.9^{\&}$ 9 $(51/2^-)$ G 10589 15 $3/2^+$ H IAS, $\Gamma=36$ keV, $\Gamma(p)=5$ keV, L=2. Analog of ¹¹⁵ Sn $3/2^+$, 497-keV state. 10698 15 $7/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=3$ keV, L=(4). Analog of ¹¹⁵ Sn $7/2^+$, 613-keV state. 11065 15 $5/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, L=2. Analog of ¹¹⁵ Sn $5/2^+$, 987-keV state.	7172.3 ^{&} 6	$(39/2^{-})$	G	
$8256.8^{\textcircled{0}}$ 12 $(43/2^-)$ G $9151.1^{\textcircled{\&}}$ 8 $(47/2^-)$ G 10083 15 $1/2$ H IAS, $\Gamma=38$ keV, $\Gamma(p)=8$ keV, $L=0$. Analog of 115 Sn $1/2^+$ g.s. $10305.9^{\textcircled{\&}}$ 9 $(51/2^-)$ G 10589 15 $3/2^+$ H IAS, $\Gamma=36$ keV, $\Gamma(p)=5$ keV, $L=2$. Analog of 115 Sn $3/2^+$, 497 -keV state. 10698 15 $7/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=3$ keV, $L=(4)$. Analog of 115 Sn $7/2^+$, 613 -keV state. 11065 15 $5/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, $L=2$. Analog of 115 Sn $5/2^+$, 987 -keV state.	8104.5 <mark>&</mark> 7	$(43/2^{-})$	G	
9151.1 & 8 $(47/2^{-})$ G10083 I51/2HIAS, Γ =38 keV, $\Gamma(p)$ =8 keV, L=0. Analog of ¹¹⁵ Sn 1/2 ⁺ g.s.10305.9 & 9 $(51/2^{-})$ G10589 I53/2 ⁺ HIAS, Γ =36 keV, $\Gamma(p)$ =5 keV, L=2. Analog of ¹¹⁵ Sn 3/2 ⁺ , 497-keV state.10698 I57/2 ⁺ HIAS, Γ =50 keV, $\Gamma(p)$ =3 keV, L=(4). Analog of ¹¹⁵ Sn 7/2 ⁺ , 613-keV state.11065 I55/2 ⁺ HIAS, Γ =50 keV, $\Gamma(p)$ =1 keV, L=2. Analog of ¹¹⁵ Sn 5/2 ⁺ , 987-keV state.	8256.8 [@] 12	$(43/2^{-})$	G	
10083 15 1/2 H IAS, Γ =38 keV, $\Gamma(p)$ =8 keV, L=0. Analog of ¹¹⁵ Sn 1/2 ⁺ g.s. 10305.9 & 9 (51/2 ⁻) G 10589 15 3/2 ⁺ H IAS, Γ =36 keV, $\Gamma(p)$ =5 keV, L=2. Analog of ¹¹⁵ Sn 3/2 ⁺ , 497-keV state. 10698 15 7/2 ⁺ H IAS, Γ =50 keV, $\Gamma(p)$ =3 keV, L=(4). Analog of ¹¹⁵ Sn 7/2 ⁺ , 613-keV state. 11065 15 5/2 ⁺ H IAS, Γ =50 keV, $\Gamma(p)$ =1 keV, L=2. Analog of ¹¹⁵ Sn 5/2 ⁺ , 987-keV state.	9151.1 <mark>&</mark> 8	$(47/2^{-})$	G	
Analog of 115 Sn $1/2^+$ g.s. 10305.9 $\stackrel{\&}{} 9$ (51/2 ⁻) G 10589 15 $3/2^+$ H IAS, Γ =36 keV, $\Gamma(p)=5$ keV, L=2. Analog of 115 Sn $3/2^+$, 497-keV state. 10698 15 $7/2^+$ H IAS, Γ =50 keV, $\Gamma(p)=3$ keV, L=(4). Analog of 115 Sn $7/2^+$, 613-keV state. 11065 15 $5/2^+$ H IAS, Γ =50 keV, $\Gamma(p)=1$ keV, L=2. Analog of 115 Sn $5/2^+$, 987-keV state.	10083 15	1/2	Н	IAS, Γ =38 keV, Γ (p)=8 keV, L=0.
10305.9 (5) 9 (51/2 ⁻) G 10589 15 $3/2^+$ H IAS, Γ =36 keV, $\Gamma(p)$ =5 keV, L=2. Analog of ¹¹⁵ Sn 3/2 ⁺ , 497-keV state. 10698 15 $7/2^+$ H IAS, Γ =50 keV, $\Gamma(p)$ =3 keV, L=(4). Analog of ¹¹⁵ Sn 7/2 ⁺ , 613-keV state. 11065 15 $5/2^+$ H IAS, Γ =50 keV, $\Gamma(p)$ =1 keV, L=2. Analog of ¹¹⁵ Sn 5/2 ⁺ , 987-keV state.				Analog of 115 Sn $1/2^+$ g.s.
10589 15 $3/2^+$ HIAS, $\Gamma=36 \text{ keV}, \Gamma(p)=5 \text{ keV}, L=2.$ Analog of 115 Sn $3/2^+, 497\text{-keV}$ state.10698 15 $7/2^+$ HIAS, $\Gamma=50 \text{ keV}, \Gamma(p)=3 \text{ keV}, L=(4).$ Analog of 115 Sn $7/2^+, 613\text{-keV}$ state.11065 15 $5/2^+$ HIAS, $\Gamma=50 \text{ keV}, \Gamma(p)=1 \text{ keV}, L=2.$ Analog of 115 Sn $5/2^+, 987\text{-keV}$ state.	10305.9 ^{&} 9	$(51/2^{-})$	G	
Analog of 115 Sn $3/2^+$, 497 -keV state.10698 15 $7/2^+$ HIAS, $\Gamma=50$ keV, $\Gamma(p)=3$ keV, $L=(4)$. Analog of 115 Sn $7/2^+$, 613 -keV state.11065 15 $5/2^+$ HIAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, $L=2$. Analog of 115 Sn $5/2^+$, 987 -keV state.	10589 15	3/2+	Н	IAS, $\Gamma=36$ keV, $\Gamma(p)=5$ keV, L=2.
11065 15 $7/2$ If IAS, $1-50$ keV, $1-(p)-5$ keV, $L-(4)$. Analog of 115 Sn $7/2^+$, 613 -keV state. 11065 15 $5/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, $L=2$. Analog of 115 Sn $5/2^+$, 987 -keV state.	10608 15	7/2+	u	Analog of 115 Sn $3/2^+$, $49/-$ keV state.
11065 15 $5/2^+$ H IAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, L=2. Analog of ¹¹⁵ Sn $5/2^+$, 987-keV state.	10070 15	1/2	п	Analog of $\frac{115}{\text{Sn}}$ 7/2 ⁺ 613-keV state
Analog of 115 Sn 5/2 ⁺ , 987-keV state.	11065 15	$5/2^{+}$	Н	IAS, $\Gamma=50$ keV, $\Gamma(p)=1$ keV, L=2.
				Analog of ¹¹⁵ Sn 5/2 ⁺ , 987-keV state.

 † From least-squares fit to γ energies.

^{\ddagger} J^{π} without comments are based on rotational-band structure, on γ mult and γ -decay patterns.

[#] Band(A): 9/2(404) band. Prolate deformation (β_2 =0.20)deduced from intraband-branching ratios and δ of Δ J=1 transitions. Analogous K=9/2 rotational bands are populated in ¹¹³Sb,¹¹⁷Sb up to J=19/2⁺. See 1976He16 for calculation on coexistence of spherical and deformed states near Z=50.

^(a) Band(B): Intruder-rotational band $\Delta J=2$.

& Band(C): Intruder-rotational band $\Delta J=2$.

^{*a*} Band(D): Strongly-coupled band $\Delta J=1$.

$\underline{\gamma}(^{115}\text{Sb})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α #	Comments
723.583 770.40 1071.73	$7/2^+$ $1/2^+$ $(3/2)^+$	723.569 22 770.40 10 1071.70 21	100 100 100	$\begin{array}{c ccc} 0.0 & 5/2^+ \\ 0.0 & 5/2^+ \\ 0.0 & 5/2^+ \end{array}$	M1(+E2)			
1098.63 1300.21	$7/2^+$ 11/2 ⁻	1098.64 <i>4</i> 576.51 <i>7</i> 1300.25 <i>6</i>	100 8.6 21 100 5	$\begin{array}{ccc} 0.0 & 5/2^+ \\ 723.583 & 7/2^+ \\ 0.0 & 5/2^+ \end{array}$	M1(+E2) M2 E3		0.019	Mult.: $-3 \le \delta \le -0.13$. B(M2)(W.u.)=0.263 15 B(E3)(W.u.)=36.4 18
1326.85	9/2+	228.22 <i>10</i> 603.26 6 1326 83 5	3.7 4 23 4 100 12	$\begin{array}{c} 1098.63 & 7/2^+ \\ 723.583 & 7/2^+ \\ 0.0 & 5/2^+ \end{array}$	M1 F2			B(M1)(W.u.)>0.0036 B(E2)(W.u.)>0.65
1380.58	9/2+	281.96 <i>3</i> 656.98 <i>4</i>	4.4 <i>4</i> 31.0 <i>10</i>	$\begin{array}{cccc} 0.0 & 5/2 \\ 1098.63 & 7/2^+ \\ 723.583 & 7/2^+ \\ 0.0 & 5/2^+ \end{array}$	M1+E2	-0.07 4		B(M1)(W.u.)>0.0035 B(M2)(W.u.)>0.0035
1504.17	(3/2)+	1380.58 6 405.9 5 780.5 4 1504 1 2	100 3 24 9 21 6 100 9	$\begin{array}{cccc} 0.0 & 5/2^+ \\ 1098.63 & 7/2^+ \\ 723.583 & 7/2^+ \\ 0.0 & 5/2^+ \end{array}$	E2			B(E2)(W.u.)>0.50
1736.21 1755.03	$(5/2^+)$ $(11/2)^+$	1012.62 <i>18</i> 374.47 <i>5</i>	100 100 <i>3</i>	723.583 7/2 ⁺ 1380.58 9/2 ⁺	(M1+E2) M1+E2	+0.24 2	0.01776	Mult.: +0.33 $\leq \delta \leq$ +3. $\alpha(K)=0.01537$ 22; $\alpha(L)=0.00193$ 3; $\alpha(M)=0.000381$ 6; $\alpha(N+)=8.07\times10^{-5}$ 12
		428.12 9	36.9 13	1326.85 9/2+	M1+E2	+0.28 7	0.1264	$\alpha(N)=7.35\times10^{-5} 11; \ \alpha(O)=7.26\times10^{-6} 11 \\ \alpha(K)=0.01094 \ 16; \ \alpha(L)=0.001366 \ 20; \ \alpha(M)=0.000270 \ 4; \\ \alpha(N+)=5.72\times10^{-5} 9 \\ \alpha(N)=5.21\times10^{-5} 8; \ \alpha(O)=5.15\times10^{-6} 8$
1937.17 2074.39		1213.58 <i>13</i> 570.0 <i>14</i> 1350 8 2	100 27 <i>19</i> 100 <i>12</i>	$\begin{array}{cccc} 723.583 & 7/2^+ \\ 1504.17 & (3/2)^+ \\ 723.583 & 7/2^+ \end{array}$				<i>u</i> (1)=5.21×10 0, <i>u</i> (0)=5.15×10 0
2092.54	(13/2)+	337.52 10	100 12	$1755.03 (11/2)^+$	M1+E2	+0.156 11	0.0231	$\alpha(K)=0.0200 \ 3; \ \alpha(L)=0.00251 \ 4; \ \alpha(M)=0.000496 \ 7; \ \alpha(N+)=0.0001051 \ 15 \ \alpha(N)=9.57\times10^{-5} \ 14 \ \alpha(\Omega)=9.46\times10^{-6} \ 14$
2104.36 2215.11	$(3/2)^+$ $(3/2)^+$	711.8 6 2104.4 2 1115.3 6 1143.4 5 1491.7 3	13.8 7 100 37 16 26 16 58 11	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(E2)			
2315.97 2323.43	(13/2) ⁻ (9/2) ⁺	2215.3 4 1015.64 15 568.39 6 942.87 12 996.61 15 1022.8 3 1224.5 2 1599.90 8	100 10 100 100 11 66 5 40 5 26 3 28 3 94 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1+E2 M1	-0.28 11		

4

$\gamma(^{115}\text{Sb})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments
2389.02	$(7/2)^+$	634.06 15	15.8 16	1755.03	$(11/2)^+$	(E2)			
		1061.6 4	10.3 16	1326.85	9/2+				
		1088.4 <i>3</i>	13.6 22	1300.21	$11/2^{-}$				
		1290.50 12	100 6	1098.63	7/2+				
		1315.5 8	2.2 11	1071.73	$(3/2)^+$				
		1665.4 2	15.8 16	723.583	7/2+				
0457 50	(15/0)+	2389.1 4	4.0 8	0.0	$5/2^+$		0 101 6	0.01004	
2457.58	$(15/2)^{+}$	364.95 15	100 5	2092.54	$(13/2)^+$	MI+E2	+0.181 6	0.01904	
2516.01	15/2-	/02.6 4	25 3	1/00.01	$(11/2)^{+}$	E2 E2			
2510.91	15/2	1210.70 8	100	1300.21	$\frac{11/2}{(12/2)^{-1}}$	E_2 M1 + E2	0.14.0	0.0262	
2038.42	13/2	322.34 14	25.7 20	2515.97	(15/2) $11/2^{-}$	$\mathbb{N}11 \pm \mathbb{E}2$	-0.14 9	0.0202	
2650.03	$(3/2)^+$	555 7 3	100 5	2104.36	$(3/2)^+$	EZ			
2059.95	(3/2)	1155 7 4	75 25	1504.17	$(3/2)^+$				
		156174	100 25	1098.63	$\frac{(3/2)}{7/2^+}$				
		1936.0 3	92 17	723.583	$7/2^+$				
		2659.9 8	15 4	0.0	$5/2^+$				
2688.27	$(5/2,7/2)^+$	1589.5 3	26 4	1098.63	$7/2^+$				
		1617.1 5	14 4	1071.73	$(3/2)^+$				
		2688.20 20	100 12	0.0	5/2+				
2709.7	$(3/2)^+$	1205.5 4	100 27	1504.17	$(3/2)^+$				
		1986.2 5	38 14	723.583	$7/2^{+}$				
2763.81	$(1/2,3/2)^+$	548.70 20	92 15	2215.11	$(3/2)^+$				
		689.4 <i>3</i>	100 23	2074.39					
2796.26	$(19/2)^{-}$	157.84 6	33.0 <i>23</i>	2638.42	$15/2^{-}$	E2		0.33	$\alpha(K)=0.259 4; \alpha(L)=0.0561 8; \alpha(M)=0.01143 16;$
									$\alpha(N+)=0.002294$
									$\alpha(N)=0.002113; \alpha(O)=0.000171325$
		270.26.0	100.0	2516.01	15/0-	E2		0.0469	B(E2)(W.u.)=0.243.19 B(E2)(W.u.)=0.0424.12
2803 4	$(17/2)^{-}$	219.30 9	100 9	2310.91	$\frac{13}{2}$ $(15/2)^+$	E2 E1		0.0408	B(E2)(W.U.)=0.0424 15
2805.4	$(17/2)^+$	345.80 20	100 2	2457.58	$(15/2)^+$	$M1\pm F2$	±0.166.13	0.01701	$\alpha(\mathbf{K}) = 0.01473.21; \alpha(\mathbf{L}) = 0.00184.3; \alpha(\mathbf{M}) = 0.000363.5;$
2050.40	(17/2)	500.799	100 2	2437.30	(13/2)	WITTE2	+0.100 15	0.01701	$\alpha(\mathbf{N}) = 0.0147521$, $\alpha(\mathbf{L}) = 0.001645$, $\alpha(\mathbf{M}) = 0.00050555$, $\alpha(\mathbf{N}+) = 7.69 \times 10^{-5} 11$
									$\alpha(N) = 7.00 \times 10^{-5} 10; \ \alpha(O) = 6.93 \times 10^{-6} 10$
		745.98 18	33.6	2092.54	$(13/2)^+$	E2			
2960.66	$19/2^{-}$	443.75 8	100	2516.91	$15/2^{-1}$	E2		0.011	
3003.64	$(21/2)^{-}$	207.38 10	100	2796.26	$(19/2)^{-}$	M1+E2	-0.21 6	0.085	
3255.45	$(19/2)^+$	417.13 19	100 6	2838.40	$(17/2)^+$	M1+E2	+0.116 6	0.01360	
	/	797.89 19	479	2457.58	$(15/2)^+$	E2			
3445.47	$(23/2)^{-}$	441.86 8	100	3003.64	$(21/2)^{-}$	M1+E2	-0.28 6		
3542.37	23/2-	581.76 <i>11</i>	100	2960.66	$19/2^{-}$	E2			
3544.5	$(21/2^{-})$	540.4 <i>3</i>	100	3003.64	$(21/2)^{-}$	(M1,E2)			
3659.60	$(25/2)^+$	214.16 7	100	3445.47	$(23/2)^{-}$	E1		0.022	α (K)=0.0194 3; α (L)=0.00239 4; α (M)=0.000470 7;

S

From ENSDF

Adopted Levels, Gammas (continued)											
γ ⁽¹¹⁵ Sb) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments			
								$\alpha(N+) = 9.85 \times 10^{-5} 14$			
								$\alpha(N)=8.99\times10^{-5} \ 13; \ \alpha(O)=8.63\times10^{-6} \ 13$ B(E1)(W.u.)=7.0×10^{-6} \ 4			
3692.63	$(21/2)^+$	437.20 8 854.08 <i>23</i>	100 <i>4</i> 36 2	3255.45 2838.40	$(19/2)^+$ $(17/2)^+$	M1+E2 E2	+0.12 3				
3792.3	$(23/2^{-})$	247.3 <i>3</i>	100	3544.5	$(21/2^{-})$	(M1,E2)					
4111.8	$(25/2^{-})$	319.4 <i>3</i>	100	3792.3	$(23/2^{-})$	(M1,E2)					
4120.0	$(23/2^+)$	427.4 <i>3</i>		3692.63	$(21/2)^+$	M1,E2					
		864.6 <i>3</i>	100	3255.45	$(19/2)^+$	(E2)					
4262.7	27/2-	720.3 3	100	3542.37	23/2-	E2					
4283.0		623.4 <i>3</i>	100	3659.60	$(25/2)^+$						
4344.6		685.5 <i>3</i>	100	3659.60	$(25/2)^+$	(M1,E2)					
4492.3	$(27/2^{-})$	380.6 3		4111.8	$(25/2^{-})$	(M1,E2)					
		699.5 3	100 -	3792.3	$(23/2^{-})$	(E2)					
4510.8	$(25/2^{+})$	390.6 3	100 5	4120.0	$(23/2^{+})$	M1,E2					
4551 10	22/2-	818.1 3	21.6 12	3692.63	$(21/2)^{+}$	(E2)					
4551.13	23/2	1590.1 3	<50	2960.66	19/2	(E2)					
4722.0		1754.8 5	100	2796.26	(19/2)	(E2)					
4/32.9	(07/0+)	10/3.3 3	100	3659.60	$(25/2)^{+}$						
4885.4	$(21/2^{+})$	3/4.3 3	100	4510.8	$(25/2^+)$	MI,E2					
1000 C	(20)(2-)	/65.5 3	100	4120.0	$(23/2^{+})$	(E2)					
4900.6	(29/2)	407.8 3	100	4492.3	(21/2)	(M1,E2)					
1095 1		/88.0 3	<0/	4111.8	(25/2)	(E2)					
4985.1	27/2-	/02.1 3	62 2	4285.0	22/2-	EO					
3034.8	21/2	403.3 3	100 5	4331.13	23/2	E2 E2					
5100.6	21/2-	1492.0 J 946.0 2	100 5	2042.27 4262 7	23/2	E2 E2					
5150.1	$\frac{31/2}{(31/2^{-})}$	887 1 3	100	4202.7	27/2	(E2)					
5245.0	(31/2) $(20/2^+)$	350 5 3	100 5	4202.7	$(27/2^+)$	(L2) M1E2					
5245.0	(29/2)	734 4 3	161.8	4510.8	(27/2) $(25/2^+)$	(F2)					
5330.7		986.6.3	100	4344 6	(23/2)	(L2)					
5333.1	$(31/2^{-})$	434 7 3	100	4900.6	$(29/2^{-})$	(M1 E2)					
5555.1	(31/2)	843 5 3	100	4492.3	$(27/2^{-})$	(E2)					
5632.6	$31/2^{-}$	597.8.3	100	5034.8	$(27/2)^{-}$	E2					
5635.7	$(31/2^+)$	390.6.3	100	5245.0	$(29/2^+)$	(M1.E2)					
2022.1	(31/2)	750.2.3	14	4885.4	$(27/2^+)$	(E2)					
5704.1		971.2.3	100	4732.9	(_//_)	(112)					
5784.5		1051.6.3	100	4732.9							
5793.0	$(33/2^{-})$	461.3 3	100	5333.1	$(31/2^{-})$	(M1.E2)					
2.2010	(,-)	890.4 3	100	4900.6	$(29/2^{-})$	(E2)					
6029.5	$(33/2^+)$	393.6 3	100 5	5635.7	$(31/2^+)$	(M1.E2)					
	× , /				/	. , /					

From ENSDF

 ${}^{115}_{51}{
m Sb}_{64}{
m -6}$

 ${}^{115}_{51}{
m Sb}_{64}{
m -6}$

γ (¹¹⁵Sb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]
6029.5	$(33/2^+)$	784.8 <i>3</i>	33.3 17	5245.0	$(29/2^+)$	(E2)	7120.8	$(39/2^{-})$	1051.6 3	100	6069.2	$(35/2^{-})$	(E2)
6069.2	$(35/2^{-})$	959.6 <i>3</i>	100	5109.6	31/2-	E2	7172.3	$(39/2^{-})$	823.3 <i>3</i>	100	6349.0	35/2-	(E2)
6349.0	$35/2^{-}$	716.4 <i>3</i>	100	5632.6	$31/2^{-}$	E2	8104.5	$(43/2^{-})$	932.2 <i>3</i>	100	7172.3	$(39/2^{-})$	(E2)
6431.7	$(35/2^+)$	402.2 3	100	6029.5	$(33/2^+)$		8256.8	$(43/2^{-})$	1136 <i>1</i>	100	7120.8	$(39/2^{-})$	
6885.7	$(37/2^+)$	454.1 <i>3</i>	100	6431.7	$(35/2^+)$		9151.1	$(47/2^{-})$	1046.6 <i>3</i>	100	8104.5	$(43/2^{-})$	
		856.1 <i>3</i>	<40	6029.5	$(33/2^+)$		10305.9	$(51/2^{-})$	1154.8 5	100	9151.1	$(47/2^{-})$	

[†] Average from all γ data. [‡] From ¹¹³In(α ,2n γ) and/or (HI,xn γ). [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 ${}^{115}_{51}{
m Sb}_{64}$ -7

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{115}_{51}$ Sb₆₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{115}_{51}$ Sb₆₄

