¹¹⁵Sb IT decay (159 ns) 1977Br08,1979Ko02,1979Fa03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 113, 2391 (2012)	1-Sep-2012

Parent: ¹¹⁵Sb: E=2796.26 *9*; $J^{\pi}=19/2^-$; $T_{1/2}=159$ ns *3*; %IT decay=100.0 Others: 1974GaZG, 1975FoZK, 1975HeZF. ¹¹³In(α ,2n γ) E=28 MeV (1979Ko02), E=27 MeV (1977Br08) pulsed α . ¹¹⁵In(α ,4n γ) E=48 MeV (1979Fa03) pulsed α . ¹¹²Cd(⁶Li,3n γ) E=34 MeV (1974GaZG,1975FoZK) pulsed ⁶Li.

¹¹⁵Sb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$5/2^{+}$	32.1 min 3	
723.6	$7/2^+$		
1300.2	$11/2^{-}$	6.2 ns 3	
2516.9	$15/2^{-}$		
2638.5	$15/2^{-}$		
2796.26 9	19/2-	159 ns <i>3</i>	$T_{1/2}$: 159 ns 3 (1979Sh03) 279 γ (t) pulsed beam. Others: 156 ns 3 (1977Br08), 157 ns 5 (1979Ko02).
			Branching: $I\gamma(158\gamma)/I\gamma(279\gamma)=0.33$ 4 av of 0.324 49 (1979Sh03), 0.338 41 (1977Br08).

[†] From Adopted Levels.

$\gamma(^{115}\text{Sb})$

I γ normalization: for I(γ +ce)=100 transitions from isomeric state.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments
157.82 7	33 4	2796.26	19/2-	2638.5	15/2-	E2	0.329	α (K)=0.259 4; α (L)=0.0561 8; α (M)=0.01144 $I7$; α (N+)=0.00229 4 α (N)=0.00212 3; α (O)=0.0001714 25 α (K)exp=0.29 10; α (L)exp=7.8 18 Hf(E2,158 γ)=4.2 W.u.
279.40 14	100	2796.26	19/2-	2516.9	15/2-	E2	0.0467	$\alpha(K)=0.0389 \ 6; \ \alpha(L)=0.00629 \ 9; \\ \alpha(M)=0.001263 \ 18; \ \alpha(N+)=0.000259 \ 4 \\ \alpha(N)=0.000238 \ 4; \ \alpha(O)=2.10\times10^{-5} \ 3 \\ \alpha(K)\exp=0.038 \ 6; \ \alpha(L)\exp=0.0062 \ 10; \\ \alpha(M)\exp=0.0017 \ 4 \\ \alpha(M)\exp=0.0017 $
576.50 <i>13</i>	11.8 CA	1300.2	11/2-	723.6	7/2+	M2	0.0186	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01601 \ 23; \ \alpha(\mathbf{L}) = 0.00212 \ 3; \\ &\alpha(\mathbf{M}) = 0.000422 \ 6; \ \alpha(\mathbf{N}+) = 8.95 \times 10^{-5} \ 13 \\ &\alpha(\mathbf{N}) = 8.15 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 8.03 \times 10^{-6} \ 12 \\ &\alpha(\mathbf{K}) \exp = 0.019 \ 4 \\ &\mathbf{I}_{\gamma}: \ \text{calc from } \mathbf{I}_{\gamma}(577\gamma)/\mathbf{I}_{\gamma}(1300\gamma) = 0.087 \ 3 \\ &(1978Su05) \ \text{and } \mathbf{I}(\gamma + ce) \ \text{balance about } 1300 \\ &\text{level.} \end{aligned}$
723.57 4	12.0 <i>CA</i>	723.6	7/2+	0.0	5/2+	M1(+E2)		I _γ : calc from Ti(723γ)=Ti(576γ). Mult.: α (K)exp=0.0030 6 (1977Br08), 0.0034 2 (1974Ch51).
1216.70 <i>11</i>	104.6 CA	2516.9	15/2-	1300.2	11/2-	E2		α (K)=0.00078 α (K)exp=0.0008 2 I _{γ} : calc from Ti(1217 γ)=Ti(279 γ).

Continued on next page (footnotes at end of table)

		11.	'Sb IT de	ecay (159 ns)	1977Br08	,1979Ko02,1979Fa03 (continued)
$\gamma(^{115}\text{Sb}) \text{ (continued)}$						
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	Comments
1300.25 10	136 CA	1300.2	11/2-	0.0 5/2+	E3	$\alpha(K)=0.00130; \ \alpha(L)=0.00017$ $\alpha(K)\exp=0.0013 \ 3$
1338.23 <i>13</i>	43.9 <i>CA</i>	2638.5	15/2-	1300.2 11/2-	E2	$\alpha(K) = 0.00064$ I_{γ} : calc from Ti(1338 γ)=Ti(158 γ). $\alpha(K)$ exp=0.00062 <i>16</i> .

[†] From 1977Br08, except 723.57 γ from 1974Ch51.

[‡] Deduced from α (K)exp, α (L)exp, α (M)exp (1977Br08) ce/I γ .

115

[#] For absolute intensity per 100 decays, multiply by 0.673 25.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹¹⁵Sb IT decay (159 ns) 1977Br08,1979Ko02,1979Fa03

¹¹⁵₅₁Sb₆₄