¹¹⁵Ru β⁻ decay 2011Ri07,2010Ku01,2007Ku06

History						
Type Author		Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 113, 2391 (2012)	1-Sep-2012			

Parent: ¹¹⁵Ru: E=0; $J^{\pi}=(3/2^+)$; $T_{1/2}=318$ ms *19*; $Q(\beta^-)=8165$ *12*; $\%\beta^-$ decay=100.0

¹¹⁵Ru-T_{1/2}: From measurement in 2010Ku25, including also the value of 270 ms 38 in 2010Ku01. Note other half-lives have been reported such as 740 ms 80 (1992Ay02: 405 ms +96-80 (2006Mo07).

¹¹⁵Ru-Q(β⁻): Quoted by 2011Ri07 and 2007Ku06 from Penning-trap measurement (2007Ha20: Others:8040 89 (2011AuZZ), 7780 100 (2003Au03).

¹¹⁵Ru produced in 25-MeV proton-induced fission of uranium followed by mass separation at IGISOL-jyfltrap facility. The γ rays were detected by three Ge detectors, a planar Ge detector (loax) and a plastic scintillator for β radiation. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, (x ray) γ coin.

Level scheme is from 2011Ri07. Levels up to 696 were also reported in 2007Ku06, and up to 1258 in 2010Ku01. All data are from 2011Ri07, unless otherwise stated.

¹¹⁵Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]
0.0	$(7/2^+)$	617.6 2	$(7/2^+)$	1010.6 3	1474.4 4
213.2? 2	$(9/2^+)$	695.9 <i>3</i>	$(3/2^+)$	1117.6 <i>3</i>	1684.6 5
292.4 2	$(3/2^+)$	730.8 2	$(1/2^+)$	1258.7 4	2050.4 4
372.5 2	$(5/2^+)$	935.0 <i>3</i>	$(5/2^+)$	1398.3 6	2249.4 <i>4</i>
499.5 2	$(3/2^+)$	1002.7 <i>3</i>		1452.4 <i>3</i>	2280.1 6

[†] From least-squares fit to $E\gamma$ data in 2011Ri07.

[‡] From systematics of neighboring nuclides (2011Ri07).

β^- radiations

By comparison the total β feeding to states in ¹¹⁵Rh with that to β feeding of states in ¹¹⁵Pd in ¹¹⁵Ru -> ¹¹⁵Rh -> ¹¹⁵Pd decay chain, 2011Ri07 find that 6% 6 of the β feeding from ¹¹⁵Ru is unaccounted. One possibility is that the 76-ms isomer found in 2010Ku25 partly decays by β decay which may also explain small β feeding of (7/2⁺) state at 617.6.

E(decay)	E(level)	$I\beta^{-\ddagger}$	$\log ft^{\dagger}$	Comments
(5885 12)	2280.1	2.1 3	5.7 1	av E β =2628.2 58
(5916 12)	2249.4	3.7 6	5.5 1	av E β =2642.8 58
(6115 12)	2050.4	5.4 6	5.4 1	av $E\beta = 2737.958$
(6480 12)	1684.6	3.3 4	5.7 1	av $E\beta = 2912.858$
(6691 12)	1474.4	2.3 5	5.9 1	av $E\beta = 3013.258$
(6713 12)	1452.4	4.8 12	5.6 1	av $E\beta = 3023.758$
(6767 12)	1398.3	2.4 10	5.9 2	av $E\beta = 3049.658$
(6906 12)	1258.7	1.9 2	6.1 <i>1</i>	av $E\beta = 3116.358$
(7047 12)	1117.6	1.5 2	6.2 1	av E β =3183.7 58
(7154 12)	1010.6	0.5 5	6.7 5	av $E\beta = 3234.858$
(7162 12)	1002.7	4.6 2	5.8 1	av E β =3238.5 58
(7230 12)	935.0	5.0 6	5.8 1	av E β =3270.9 58
(7434 12)	730.8	72	5.7 2	av E β =3368.3 58
(7469 12)	695.9	7.4 6	5.6 1	av E β =3385.0 58
(7547 12)	617.6	2.4 4	6.2 1	av $E\beta = 3422.458$
(7666 12)	499.5	9.4 <i>13</i>	5.6 1	av E β =3478.7 58
(7793 12)	372.5	15 4	5.4 2	av E β =3539.3 58
(7873 12)	292.4	15 6	5.4 2	av E β =3577.5 58

¹¹⁵Ru β⁻ decay **2011Ri07,2010Ku01,2007Ku06** (continued)

β^{-} radiations (continued)

[†] 2011Ri07 state that all log *ft* values should be considered as lower limits since there is possibility of missing high-energy

low-intensity γ rays from high-lying levels allowed by large Q(β) window.

[‡] Absolute intensity per 100 decays.

$\gamma(^{115}\text{Rh})$

I γ normalization: deduced from the decay scheme given in 2011Ri07. No delayed neutron branch was seen in 2011Ri07. A 61.7-keV γ ray is seen in singles γ spectrum in 2010Ku01, but not in β -gated spectrum. Its half-life was measured as 76 ms *14*. In a further study, 2010Ku25 assigned this an isomer in ¹¹⁵Ru.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	$\alpha^{@}$	Comments
80.1 2	13.0 5	372.5	(5/2+)	292.4	(3/2+)	M1+E2	1.0 5	α : estimated from α (K)exp=0.9 4 (2011Ri07).
158.9 ^{‡a} 9 196.5 2 207.0 2 213.2 ^a 2	10.3 5 30.6 <i>10</i>	372.5 695.9 499.5 213.2?	$(5/2^+)$ $(3/2^+)$ $(3/2^+)$ $(9/2^+)$	213.2? 499.5 292.4 0.0	(9/2 ⁺) (3/2 ⁺) (3/2 ⁺) (7/2 ⁺)	[M1+E2] [M1+E2]	0.09 <i>4</i> 0.07 <i>3</i>	E_{γ} : seen in β-gated singles γ spectrum, in weak coin with 158 by and 404 by
231.4 2	2.3 8	730.8	$(1/2^+)$	499.5	$(3/2^+)$	[M1+E2]	0.052 17	in weak com with 156.97 and 404.27.
239.2 2	2.2 [#] 5	935.0	$(5/2^+)$	695.9	$(3/2^+)$	[M1+E2]	0.047 15	
245.1 2	2.9 4	617.6	$(7/2^+)$	372.5	$(5/2^+)$	[M1+E2]	0.043 13	
292.5 2	100 4	292.4	(3/2+)	0.0	$(7/2^+)$	[E2]	0.0307	E_{γ} : this γ ray was identified in 1992Ay02: Phys Rev Lett 69, 1167.
358.4 2 372.5 2	2.9 6 9.9 <i>14</i>	730.8 372.5	$(1/2^+)$ $(5/2^+)$	372.5 0.0	$(5/2^+)$ $(7/2^+)$	[E2] [M1+E2]	0.0157 0.012 2	I _{γ} : contribution from a 372.9 γ in ¹¹⁵ Ag decay has been subtracted.
404.2 ^{‡a} 6		617.6	$(7/2^+)$	213.2?	$(9/2^+)$			
435.5 2	3.8 [#] 5	935.0	$(5/2^+)$	499.5	$(3/2^+)$	[M1+E2]	0.0078 8	
438.3 2	3.2 [#] 23	730.8	$(1/2^+)$	292.4	$(3/2^+)$	[M1+E2]	0.0077 7	
441.9 2	4.6 [#] 10	1452.4		1010.6				
618.1 2	1.8 2	1117.6		499.5	$(3/2^+)$			
630.0 <i>3</i>	0.4 1	1002.7		372.5	$(5/2^+)$			
638.3 <i>3</i>	3.8 2	1010.6		372.5	$(5/2^+)$			
710.4 3	6.9 3	1002.7		292.4	$(3/2^+)$			
718.3 3	3.7 2	1010.6		292.4	$(3/2^{+})$			
900.3 3	2.4.5	1258.7		292.4	$(3/2^{+})$			
9/4.9 ⁴ 3	0.9'' 2	14/4.4		499.5	$(3/2^+)$			
1023.8 0	2.0 10	1398.3		572.5 1010.6	(3/2)			
1079 4 5	1310	1452.4		372.5	$(5/2^+)$			
1105.9 9	0.9 5	1398.3		292.4	$(3/2^+)$			
1182.2.5	1.9 [#] 5	1474.4		292.4	$(3/2^+)$			
1246.8 9	1.7 4	2249.4		1002.7	(0/2)			
1392.2 4	4.1 4	1684.6		292.4	$(3/2^+)$			
1677.3 5	2.5 3	2050.4		372.5	$(5/2^+)$			
1758.2 12	1.3 4	2050.4		292.4	$(3/2^+)$			
1780.6 5	2.6 4	2280.1		499.5	$(3/2^+)$			
1876.7 ^{<i>u</i>} 6	1.4 4	2249.4		372.5	$(5/2^+)$			
2249.4 4 5	1.4 5	2249.4		0.0	$(7/2^+)$			

[†] From 2011Ri07. Intensities are from β -gated singles γ spectrum, unless otherwise stated.

115 Ru β^- decay 2011Ri07,2010Ku01,2007Ku06 (continued)

$\gamma(^{115}\text{Rh})$ (continued)

[‡] Weak γ , seen in coin with 213.2 γ .

- Weak γ, seen in coin with 213.2γ.
 # From βγ coin spectra.
 @ Values are from BrIcc code available.
 & For absolute intensity per 100 decays, multiply by 0.83 5.
 ^a Placement of transition in the level scheme is uncertain.

 $^{115}_{45} Rh_{70}$