Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 113,2391 (2012)	1-Sep-2012			

 $Q(\beta^{-})=6197 \ 16$; $S(n)=6.59\times10^{3} \ 8$; $S(p)=11296 \ 8$; $Q(\alpha)=-7632 \ 13 \ 2012Wa38$

Note: Current evaluation has used the following Q record 6197 156.59E3 7 11303 15-7634 13 2011AuZZ. $Q(\beta^{-}n)=1190 \ 10 \ (2011AuZZ).$

1988Ay01, 1991Pa17 (also 1992PeZX thesis): identification and production of ¹¹⁵Rh in ²³⁸U(p,f) reaction at 20 MeV followed by mass separation.

Mass measurement (Penning-trap method, jyfltrap): 2007Ha20 (also 2004Ko42).

¹¹⁵Rh Levels

Cross Reference (XREF) Flags

A ¹¹⁵Ru β^- decay

B 252 Cf SF decay

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments	
0.0	(7/2 ⁺)	0.99 s 5	A	$\%\beta^{-}=100$ T _{1/2} : from 1988Ay01.	
213.31 [@] 22	$(9/2^+)$		В		
292.38 21	$(3/2^+)$		Α		
372.52 20	$(5/2^+)$		Α		
461.01 [#] 23	$(11/2^+)$		В		
499.3 <i>3</i>	$(3/2^+)$		Α		
599.9 <mark>&</mark> 4	$(11/2^+)$		В		
617.6 <i>3</i>	$(7/2^+)$		Α		
695.6 <i>3</i>	$(3/2^+)$		Α		
703.2 [@] 3	$(13/2^+)$		В		
730.78 24	$(1/2^+)$		Α		
934.8 <i>3</i>	$(5/2^+)$		Α		
1001.1 ^{<i>u</i>} 4	$(13/2^+)$		В		
1002.6 3			A		
1010.6 3			A		
1117.5 5	(15/0+)		A		
1141.8" 3	$(15/2^{+})$		В		
1258 6 4			A A		
1220.04	$(15/2^{+})$		n D		
1339.3 4	(13/2)		Б		
13/1.0 3	$(1/2^{+})$		A B		
1390.5 5			A A		
1474.3 4			A		
1684.6 5			A		
1776.0 ^a 5	$(17/2^+)$		В		
1926.4 [#] 4	$(19/2^+)$		В		
2050.4 4			Α		
2116.1 ^{&} 5	$(19/2^+)$		В		
2141.9 [@] 4	$(21/2^+)$		В		
2249.4 4			Α		
2280.1 6			Α		

Adopted Levels, Gammas (continued)

¹¹⁵Rh Levels (continued)

[†] From least-squares fit to $E\gamma'$ s, assuming uncertainty of 0.3 keV for each γ ray. [‡] From systematics of neighboring nuclides and bands assignments.

- # Band(A): Band built on $7/2^+, \alpha = -1/2$. @ Band(a): Band built on $7/2^+, \alpha = +1/2$. & Band(B): Yrare band based on $11/2^+, \alpha = -1/2$. a Band(b): Yrare band based on $11/2^+, \alpha = +1/2$.

$\gamma(^{115}\text{Rh})$

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	$I_{(\gamma+ce)}$
213.31	$(9/2^+)$	213.3 3	100	0.0	$(7/2^+)$			
292.38	$(3/2^+)$	292.4 <i>3</i>	100	0.0	$(7/2^+)$	[E2]		
372.52	$(5/2^+)$	80.2 <i>3</i>	100	292.38	$(3/2^+)$	M1+E2		
		372 5 3		0.0	$(7/2^+)$	[M1+E2]		
461.01	$(11/2^+)$	247 7 3	100 12	213 31	$(9/2^+)$	[1011 122]		
101.01	(11/2)	461.0.3	59	0.0	$(7/2^+)$			
499 3	$(3/2^+)$	206.8.3	100	292.38	$(3/2^+)$	[M1+E2]		
599.9	$(11/2^+)$	386.6.3	100	213 31	$(9/2^+)$	[111 22]		
617.6	$(7/2^+)$	245.1.2	100 14	372.52	$(5/2^+)$	[M1+E2]	0.043 /	3
	(.,=)	404 2 6		212 21	$(0/2^+)$	[]		-
605.6	$(3/2^{+})$	106.3.3	100	400.3	$(3/2^+)$	[M1 + E2]		
703.2	(3/2) $(13/2^+)$	242.2.3	100 12	499.5	(3/2) $(11/2^+)$	[WIT+E2]		
105.2	(13/2)	480.0.3	84	212 21	(11/2) $(0/2^+)$			
730 78	$(1/2^+)$	231 4 2	72 25	213.31 400 3	$(3/2^+)$	[M1+F2]	0.052.17	
130.10	(1/2)	358 4 2	01 10	372 52	$(5/2^+)$	$[1717 \pm 22]$	0.032 17	
		128 2 2	1.0×10^2 7	202.32	$(3/2^{+})$	$\begin{bmatrix} \mathbf{L}^2 \end{bmatrix}$	0.0137	
024.8	$(5/2^{+})$	430.5 2	1.0×10 /	292.30 605.6	(3/2) $(2/2^+)$	[M1+E2]	0.00777	
934.0	(3/2)	239.2 2 135 5 2	100 13	400.3	(3/2) $(3/2^+)$	[M1+E2]	0.04713	
1001.1	$(13/2^{+})$	401.2.3	100 15	500.0	(3/2) $(11/2^+)$	[WIT+E2]	0.0078-8	
1001.1	(13/2)	630.0.3	5814	377 57	(11/2) $(5/2^+)$			
1002.0		710 4 3	100 A	202.32	$(3/2^+)$			
1010.6		638 3 3	100 7	372.50	$(5/2^+)$			
1010.0		718 3 3	97 5	292.32	$(3/2^+)$			
1117 5		618 1 2	100	499.3	$(3/2^+)$			
1141.8	$(15/2^+)$	438.6.3	100 12	703.2	$(3/2^{+})$ $(13/2^{+})$			
1111.0	(10/2)	680.8.3	58	461.01	$(13/2^+)$ $(11/2^+)$			
1166 1		231.3.3	100	934.8	$(5/2^+)$			
1258.6		966.2.3	100	292.38	$(3/2^+)$			
1339.3	$(15/2^+)$	338.2.3	100	1001.1	$(3/2^+)$			
1007.0	(10/2)	739.4.3		599.9	$(11/2^+)$			
1371.0	$(17/2^+)$	229.2.3		1141.8	$(15/2^+)$			
10/110	(1),=)	667.8.3		703.2	$(13/2^+)$			
1398 3		1025.8.6	1.0×10^2 5	372.52	$(5/2^+)$			
1570.5		1105.9.9	45 25	292.38	$(3/2^+)$			
1452.4		441 9 2	100 22	1010.6	(3/2)			
1132.1		1079 4 5	28 22	372.52	$(5/2^+)$			
1474 2		074 0 2	47 11	400.2	$(2/2^+)$			
14/4.5		9/4.9 5	4/11	499.5	(3/2)			
16046		1182.2.5	1.0×10 ² 3	292.38	$(3/2^+)$			
1084.0	(17/2+)	1392.24	100	292.38	$(3/2^{+})$ $(15/2^{+})$			
1//0.0	$(1/2^{\circ})$	430./ 3		1339.3	$(15/2^{\circ})$			
		774.9+ 3		1001.1	$(13/2^+)$			
1926.4	$(19/2^+)$	555.4 3		1371.0	$(17/2^+)$			
		784.6 3	100.0-	1141.8	$(15/2^+)$			
2050.4		1040.14	100.21	1010.6				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{115}\text{Rh})$	(continued)
---------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
2050.4		1677.3 5	89 11	372.52	$(5/2^+)$
		1758.2 12	46 14	292.38	$(3/2^+)$
2116.1	$(19/2^+)$	340.1 <i>3</i>		1776.0	$(17/2^+)$
		776.8 [‡] 3		1339.3	$(15/2^+)$
2141.9	$(21/2^+)$	215.5 [‡] 3		1926.4	$(19/2^+)$
		770.9 <i>3</i>		1371.0	$(17/2^+)$
2249.4		1246.8 9	100 24	1002.6	
		1876.7 [‡] 6	82 24	372.52	$(5/2^+)$
		2249.4 [‡] 5	8.×10 ¹ 3	0.0	$(7/2^+)$
2280.1		1780.6 5	100	499.3	$(3/2^+)$

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[±] Placement of transition in the level scheme is uncertain.

Legend

Adopted Levels, Gammas

 $^{115}_{45} Rh_{70}$

¹¹⁵₄₅Rh₇₀