¹¹⁵Cd β⁻ decay (53.46 h) 1978He08,1967Ba18,1974Bo26

		History	
Туре	Author	Citation	Literature Cutoff Date
Update	Balraj Singh	ENSDF	03-Jun-2019

Parent: ¹¹⁵Cd: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=53.46$ h 5; $Q(\beta^-)=1451.9$ 7; $\%\beta^-$ decay=100.0

¹¹⁵Cd-J^{π},T_{1/2}: From ¹¹⁵Cd Adopted Levels.

¹¹⁵Cd-Q(β^{-}): From 2017Wa10.

Previous dataset in 2012B110 evaluation corrected and updated by B. Singh (McMaster), June 03, 2019.

Literature (NSR) search did not indicate any newer experimental studies of this decay. The Q value has been adopted from 2017Wa10. Revised mixing ratio of 35.6-keV transition has been deduced using BrIccMixing code. E5 admixture in the 336-keV transition from the isomer is deduced from conversion data, and discussed in terms of realistic B(E5) transition probability. The β feedings and log *ft* values have been re-evaluated. 2013Ha24 is a theoretical study of ¹¹⁵Cd decay with the calculation of partial half-lives of possible 4th-forbidden decays to 1418 and 1449 levels, both with $J^{\pi}=9/2^+$. Note that none of these two levels have been populated in the available experimental studies of the decay of the ground state of ¹¹⁵Cd.

Additional information 1.

1978He08: measured $E\gamma$, $I\gamma$ using Compton-suppressed Ge detectors.

1967Ba18: measured E γ , I γ , ce, $\beta\gamma(t)$ and $\gamma(ce)(t)$.

1974Bo26: measured E γ , I γ , x rays, ce, $\beta\gamma$ -coin.

Others (γ and ce data): 1974HeYW, 1973Is03, 1967Mc13, 1966Gr14, 1966Pa07, 1964Bo19, 1963Ha24. $\gamma\gamma(\theta)$: 1975Bo29, 1973Ba29, 1970Be79, 1968Ba32, 1963Ha24.

¹¹⁵In Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	9/2+	4.41×10 ^{14‡} y 25	
336.242 25	1/2-	4.486 [‡] h <i>4</i>	%IT=95.0 7; % β^{-} =5.0 7 Decay modes from the Adopted Levels.
597.14 <i>3</i>	3/2-	≤0.25 [#] ns	$T_{1/2}$: from βγ(t),γγ(t) (1967Na04). Other: ≤0.17 ns (1967Be57).
828.59 [@] 3	3/2+	5.78 [#] ns 6	T _{1/2} : from βγ(t) (1971Sv01). Others: 5.99 ns 3 (1967Na04), 5.65 ns 15 (1967Mc13), 6.00 ns 12 (1967Hr02), 5.6 ns 1 (1967Be57), 5.4 ns 2 (1967Ba18), 5.5 ns 2 (1964Ta09), 5.9 ns 3 (1960Go21). g factor=+0.50 8 if T _{1/2} =5.78 ns (1974Ba24) (35γ)(492γ)(θ,H). Deduced electric quadrupole interaction (1976Lu06,1973RaZG) βγ(θ,H,t).
864.14 [@] 3	1/2+	0.91 [#] ns 3	$T_{1/2}$: from $\beta\gamma(t)$ (1971Sv01). Others: 1.15 ns 4 (1967Na04), 0.95 ns 3 (1967Mc13), 1.13 ns 6 (1967Hr02), 1.52 ns 8 (1967Be57), 1.1 ns 1 (1967Ba18).
941.424 11	5/2+		
1041.4 3	5/2-		
1078.2?	5/21		Level added in this update. Population of this level in this decay is tentative, although, definite in Coulomb excitation, (γ, γ') ; $(n, n'\gamma)$ and (d, d') . See Adopted Levels for details.
1192.50 3	(1/2+,3/2)		J^{π} : γ rays to $1/2^-$, $1/2^+$ and $5/2^+$; β feeding from $1/2^+$. Note that $J^{\pi} = (3/2)$ in Adopted Levels.
1287.39 5	1/2,3/2,5/2-		J^{π} : γ to $1/2^-$; β feeding from $1/2^+$. Note that $J^{\pi}=1/2, 3/2^-, 5/2^-$ in Adopted Levels.

[†] From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels, unless otherwise stated.

[#] Level half-lives in the Adopted Levels are from this dataset.

^(a) Possible member of $\pi 1/2[431]$ band, as characterized by E2 enhancement of intraband transitions of 35.6 and 105.2 keV. See also 2002Lu15 for details.

¹¹⁵Cd β^- decay (53.46 h) 1978He08,1967Ba18,1974Bo26 (continued)

β^- radiations

Total β^- feeding adds to 98.9% 12, slightly below 100%.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(164.5 7)	1287.39	0.0009 1	9.13 5	av Eβ=44.52 21
(259.4 7)	1192.50	0.013 1	8.60 4	av $E\beta = 73.24\ 22$
(373.7 [‡] 7)	1078.2?	$<2 \times 10^{-6}$	>12.9	av Eβ=110.41 24
(410.5 8)	1041.4	0.00008 2	11.4^{1u} 1	av E β =140.71 29
(587.87)	864.14	33.1 4	6.38 1	av $E\beta = 186.19\ 26$
				Eβ=593 2 semi-semi βγ-coin (1974Bo26) β shape factor determined. Others: 590 20 (1952Ha24), 580 (1952La02).
(623.3 7)	828.59	3.3 <i>3</i>	7.47 4	av Eβ=199.42 27
				E(decay): E β =636 2 semi-semi $\beta\gamma$ -coin (1974Bo26) β shape factor determined.
(854.8 7)	597.14	1.165 17	8.41 <i>I</i>	av Eβ=289.21 28
				$\beta(261\gamma)(\theta)$, A ₂ =-0.16 2 (1966Pa07) scintillation detector.
(1115.7 7)	336.242	61.3 10	7.11 <i>1</i>	av E β =396.22 30
				E(decay): Eβ=1110 10 (1952Ha24,1952La02), 1130 30 (1940La07).
				I β^- : I(γ +ce) imbalance of 58.2% 9 at the 336 level, representing 95.0% 7
				of the intensity from the isomer, gives I β feeding of 61.3% 10, instead
				of the 62.6 18 in 2012B110.

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $^{115}_{49} In_{66}$ -3

 $\gamma(^{115}\text{In})$

I γ normalization: Absolute photon intensities (I $\gamma/10^4$ decays) given in 1978He08. Note that from the decay scheme, γ -normalization factor is deduced as 0.01011 9 by equating I(γ +ce)(336 γ), I(γ (941 γ), and β^- decay branching from the 336.2-keV isomer to 100.

 α (K)exp normalized to α (K)(336 γ)=0.84 (M4 theory). Note that α (K)=0.856 from BrIcc with frozen orbit, 0.845 for no hole, and and 0.87 from HSICC. To conform to BrIcc with frozen orbit, experimental K-conversion coefficients listed in this dataset should be adjusted upwards by 1.9%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α &	Comments
35.57 6	42.1 3	864.14	1/2+	828.59 3/2	+ M1+E2	-0.193 24	12.1 6	
231.443 3	74 1	828.59	3/2+	597.14 3/2	- E1		0.01639	%Iγ=0.74 <i>I</i> α (K)=0.01427 20; α (L)=0.001726 25; α (M)=0.000333 5 α (N)=6.04×10 ⁻⁵ 9; α (O)=4.22×10 ⁻⁶ 6 Eγ=231.41 3, Iγ=1.40 <i>II</i> relative to 100 for 336γ (1974HeYW). α (K)exp=0.016 5 (1967Ba18). Analog: HF(E1,87γ, ¹¹¹ Ag)=1.2×10 ⁶ W.u.
252 <i>1</i> 260.896 <i>3</i>	0.009 7 194 <i>I</i>	1192.50 597.14	(1/2 ⁺ ,3/2) 3/2 ⁻	941.424 5/2 336.242 1/2	+ - M1+E2	-0.09 6	0.0376	%I γ =9.E-5 7 %I γ =1.94 <i>1</i> α (K)=0.0326 <i>5</i> ; α (L)=0.00404 <i>8</i> ; α (M)=0.000783 <i>14</i> α (N)=0.0001434 <i>25</i> ; α (O)=1.065×10 ⁻⁵ <i>16</i> E γ =260.85 <i>6</i> , I γ =3.86 <i>25</i> relative to 100 for 336 γ (1974HeYW).

 $\boldsymbol{\omega}$

			¹¹⁵ C	$\operatorname{Cd}\beta^{-}\operatorname{deca}$	ny (53.4	6 h) 1 9	78He08,19	67Ba18,1974Bo26 (continued)
γ ⁽¹¹⁵ In) (continued)								
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
266.985 10	9.2.3	864.14	1/2+	597.14	3/2-	(E1)	0.01112	δ: from $(231\gamma)(261\gamma)(\theta)$ (1973Ba29): A ₂ =-0.260 35, A ₄ =-0.007 47. Other: -0.08 9 from $(267\gamma)(231\gamma)(\theta)$ (1973Ba29). Other $\gamma\gamma(\theta)$ data: 1970Be79, 1963Ha24. From α(K)exp, mult=M1+E2, δ<1.5. α(K)exp=0.035 5 (1967Ba18). Other: 0.043 9 (1973Is03). Other δ=-0.08 9 (1973Ba29), 267γ(261γ)(θ); 1970Be79, 1963Ha24. %Iy=0.092 3
			-, -		-1-	[]		$\alpha(K)=0.00968 \ 14; \ \alpha(L)=0.001166 \ 17; \ \alpha(M)=0.000225 \ 4 \\ \alpha(N)=4.09\times10^{-5} \ 6; \ \alpha(O)=2.88\times10^{-6} \ 4 \\ E\gamma=266.90 \ 8, \ I\gamma=0.18 \ 1 \ relative \ to \ 100 \ for \ 336\gamma \ (1974HeYW). \\ HF(E1,267\gamma)=2.2\times10^7 \ W.u.$
328.38 <i>10</i> 336.241 <i>25</i>	0.33 <i>5</i> 4602 <i>20</i>	1192.50 336.242	$(1/2^+, 3/2)$ $1/2^-$	864.14 0.0	1/2+ 9/2+	M4	1.081	%Iγ=0.0033 5 %Iγ=46.02 20 α(K)=0.856 12; α(L)=0.181 3; α(M)=0.0369 6
(244-2)	0.0008.1	041 424	5/2+	507.14	2/2-	F1#	0.00568	α(N)=0.00664 10; α(O)=0.000392 6 Iγ corrected to 4602 20 (1978He08) from the previous value of 100 in 2012B110 evaluation. δ(E5/M4)<0.36 by fitting all the available ce data for K-shell conversion coefficients and subshell ratios by the BrIccMixing code. However, $δ(E5/M4)=0.36$ gives an unrealistically large B(E5)(W.u.) value of 2.1×10 ⁴ . Considering maximum B(E5)(W.u.)=143 25 (for a transition in ¹⁹⁹ Hg) in the ENSDF database, $δ(E5/M4)$ should be less than 0.03, which does not change the total conversion coefficient. E _γ : from 1974HeYW. Others: 336.301 <i>3</i> (1978He08), 336.23 <i>5</i> (1967Ba18), 336.25 <i>10</i> (1967Mu08). I _γ : per 1×10 ⁴ decays: 4590 <i>10</i> (1974Ha39); 4602 20 (1978He08, transient equilibrium, measured Iγ=4969 22 measured). K:L:M+=100 9:21 2:3 <i>1</i> (1974Bo26), 100:22 <i>1:4 1</i> (1967Ba18). α(K)exp=0.843 <i>12</i> and α(total)exp=1.073 <i>14</i> (1974Ha39, in ¹¹⁵ In IT decay); 0.91 <i>8</i> (1974Bo26), 0.90 <i>9</i> (1967Mc13), 0.91 <i>6</i> (1966Gr14), 0.84 <i>9</i> (1963Ha24). Others: 1955Es15, 1955Va04, 1966Jh01.
(344.2)	0.0008 1	941.424	5/2+	597.14	3/2-	E1#	0.00568	$\%$ I γ =8×10 ⁻⁶ <i>I</i> α (K)=0.00495 7; α (L)=0.000593 9; α (M)=0.0001144 <i>I6</i> α (N)=2.08×10 ⁻⁵ 3; α (O)=1.489×10 ⁻⁶ 2 <i>I</i> I γ : from I γ (344 γ)/I γ (941 γ)=0.11 <i>I</i> (1976Tu02) Coul. ex.
363.95 <i>10</i> 492.351 <i>4</i>	0.61 6 803 9	1192.50 828.59	(1/2 ⁺ ,3/2) 3/2 ⁺	828.59 336.242	3/2 ⁺ 1/2 ⁻	E1	0.00234	$ 6/4Iγ=0.0061 6 $ $ 6/4Iγ=8.03 9 $ $ α(K)=0.00204 3; α(L)=0.000242 4; α(M)=4.67×10-5 7 $ $ α(N)=8.53×10-6 12; α(O)=6.19×10-7 9 $ E _γ =492.274 35, I _γ =17.0 14 relative to 100 for 336γ (1974HeYW). $ α(K)\exp=0.0019 3. $ 2% M2 admixture deduced from $α(K)\exp=0.0028$ (1967Ba18); pure E1 if
527.901 7	2745 18	864.14	1/2+	336.242	1/2-	E1	0.00199	α (K)exp=0.0019 (19/31803). %I γ =27.45 18

4

 $^{115}_{49}\mathrm{In}_{66}$ -4

113 Cd β decay (53.46 h) 19/8He08,196/Ba18,19/4Bo26 (continued)									
γ ⁽¹¹⁵ In) (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α &	Comments	
505 375 24	0.17.2	1102 50	$(1/2^+ 3/2)$	507 14	3/2-			α (K)exp=0.017 <i>I</i> α (K)=0.001734 25; α (L)=0.000205 3; α (M)=3.96×10 ⁻⁵ 6 α (N)=7.23×10 ⁻⁶ <i>II</i> ; α (O)=5.26×10 ⁻⁷ 8 Ey=527.807 35, Iy=3.86 25 relative to 100 for 336 γ (1974HeYW). α (K)exp=0.0020 3 (1967Ba18), 0.0017 <i>I</i> (1973Is03).	
690.23 <i>4</i>	0.061 6	1287.39	(1/2, 3/2) $1/2.3/2.5/2^{-1}$	597.14	$3/2^{-}$			$\% I_{\gamma} = 0.000172$ %I_{\gamma} = 0.00061_6	
705.18 25	0.008 2	1041.4	5/2-	336.242	$1/2^{-}$			$\% I \gamma = 8 \times 10^{-5} 2$	
856.245 13	0.22 1	1192.50	$(1/2^+, 3/2)$	336.242	$1/2^{-}$			%Iy=0.00220 10	
941.420 11	0.007 1	941.424	5/2+	0.0	9/2+	E2 [#]	1.39×10 ⁻³	$\%$ I γ =7×10 ⁻⁵ <i>I</i> α (K)=0.001207 <i>I7</i> ; α (L)=0.0001475 <i>21</i> ; α (M)=2.86×10 ⁻⁵ <i>4</i> α (N)=5.21×10 ⁻⁶ 8: α (O)=3.79×10 ⁻⁷ 6	
951.19 6	0.028 3	1287.39	1/2,3/2,5/2-	336.242	$1/2^{-}$			%Iy=0.00028 <i>3</i>	
1078.2 ^{<i>a</i>}	< 0.0002	1078.2?	5/2+	0.0	9/2+			$\%$ I γ <2.0×10 ⁻⁴ Tentative γ from 1978He08 added in this update.	

[†] From measurements by 1978He08, except as noted. Photon intensities are per 1×10^4 decays of parent (1978He08). [‡] Deduced from α (K)exp and ce-ratio data. Assignments are the same in the Adopted Gammas.

From the Adopted Gammas.
@ For absolute intensity per 100 decays, multiply by 0.0100.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

S

¹¹⁵Cd β^- decay (53.46 h) 1978He08,1967Ba18,1974Bo26