	Ful	Type I Evaluation	Author Jean Blac	history <u>Citation</u> Literature Cutoff Date <u>Literature Cutoff Date</u>					
$Q(\beta^{-})=3102 \ 19;$ Note: Current ev	S(n)=8123 19; S(aluation has used	(p)=8780 20; Q the following	$Q(\alpha) = -510$ Q record 3	03 20 2012Wa38 3104 188124 198781 20-5104 20 2011AuZZ.					
				¹¹⁵ Ag Levels					
			Cr	ross Reference (XREF) Flags					
			A B C D	¹¹⁵ Pd β^- decay (25 s) ¹¹⁵ Ag IT decay (18.0 s) ¹¹⁵ Pd β^- decay (50 s) ²⁵² Cf SF decay					
E(level) [#]	J^{π}	T _{1/2} ‡	XREF	Comments					
0.0	1/2-	20.0 min 5	AB D	 %β⁻=100 T_{1/2}: from 1964Ba36. Others: 20 min (1969WiZX,1970OsZZ), 21.1 min 5 (1958Al90), 20.4 min 17 (1990Fo07). J^π: from log ft=6.7 to 1/2⁺, 1U transition to 5/2⁺, 360.5 level. 					
41.16 [@] 10	7/2+	18.0 s 7	ABCD	$%β^-$ =79.0 3; %IT=21.0 3 T _{1/2} : from 1974Gr29 4πβ, on-line ms. Others: 20 s 10 (1958A190), 49 s 6 (1968Kj01), 17 s 5 (1970OsZZ), 55 s 2 (1970We08), 19 s 2 (1973BrXC). E(level): E3 transition observed by 1990Fo07. J ^π : E3 γ to g.s. Isomerism identified in ¹¹¹ Ag (T _{1/2} =65 s) at 60 keV, and in ¹⁰⁹ Ag (T _{1/2} =40 s) at 88 keV. %IT: from 1990Fo07					
166.56 [@] 12 255.48 8	9/2 ⁺ 1/2 ⁻ ,3/2 ⁻		A D A	J^{π} : M1 γ to 7/2 ⁺ . J^{π} : M1 γ to 1/2 ⁻ .					
285.5 ⁶ 5 303.84 ^c 8 342.62 7 396.51 ^c 8 414.11 ^c 11 564.91 13	$(11/2^+)$ $(3/2)^+$ $1/2^-,3/2^-,5/2^-$ $(1/2)^+$ $(7/2)^+$	5.2 ns <i>3</i> 0.8 ns <i>3</i> 1.6 ns <i>3</i>	D A A A A A	J ^{π} : E1 γ to 1/2 ⁻ , (E2) γ to 7/2 ⁺ . J ^{π} : M1,E2 γ to 1/2 ⁻ g.s. J ^{π} : (E1) γ to 1/2 ⁻ g.s. E2 γ to (3/2) ⁺ . J ^{π} : (E2) γ to (3/2) ⁺ and band assignment.					
596.7° 6 597.41° 10 607.42 9 635.36 23	(13/2 ⁺) (5/2 ⁺)	<0.8 ns	D A A A	J ^{π} : from syst, member of the $K^{\pi}=1/2^+$ band.					
664.16 [@] 16 766.09 11 787.94 8	(11/2 ⁺)		AD A AC						
$803.2^{\circ}5$ 926.8 ^b 3	$(13/2^+)$ $(15/2^+)$		D D						
1110.1 ^{&} 5 1123.4 6	$(13/2^{-})$ $(13/2^{-})$ $(15/2^{+})$		D D						
1298.9 ^b 6	(17/2 ⁺)		D						
1480.4 ^w 5 1560.1 [@] 5	$(15/2^+)$ $(17/2^+)$		D ת						
1723.3 ^b 6	$(19/2^+)$		D						

¹¹⁵Ag Levels (continued)

E(level) [#]	J^{π}	XREF	E(level) [#]	J^{π}	XREF	E(level) [#]	J^{π}	XREF
1837.0 <mark>&</mark> 6	(15/2-)	D	2602.1 ^a 6	$(21/2^{-})$	D	2972.0 <mark>&</mark> 7	(_)	D
1887.3 ^{&} 5	$(17/2^{-})$	D	2624.4 ^{&} 6	$(19/2^{-})$	D	3095.2 ^a 8	$(25/2^{-})$	D
2146.6 ^{<i>a</i>} 5	$(17/2^{-})$	D	2634.3 ^b 7	$(23/2^+)$	D	3239.0 ^{&} 7	(_)	D
2385.6 ^a 6	$(19/2^{-})$	D	2849.0 ^{&} 6	(_)	D			
2418.6 [@] 6	$(21/2^+)$	D	2856.2 ^{<i>a</i>} 7	$(23/2^{-})$	D			

[†] From band assignments in SF decay, unless given otherwise.

[‡] From 1987FoZY, unless otherwise noted.

[#] From least-squares fit to γ energies.

[@] Band(A): *π*7/2[413] band.

[&] Band(B): Band based on (13/2⁻). This band may be the yrast portion of 1/2[301], Coriolis mixed with the 3/2[301] band. Negative parity for the highest three members is from figure 4 of 2002Hw06, not given in authors' table II.

^{*a*} Band(C): Band based on $(17/2^{-})$. This band may be the yrast portion of K=2, γ band built on $13/2^{-}$ band.

^{*b*} Band(D): possibly $\pi 5/2[422]$ band.

^c Band(E): Intruder band with K=1/2. Could be fit with A=15.56 keV, a=-2.73 and E0=336.4 keV.

$\gamma(^{115}\text{Ag})$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
41.16	7/2+	41.1 2	100	0.0	1/2-	E3	1.40×10 ³ 5	$\alpha(K)=102.0 \ 16; \ \alpha(L)=1.04\times10^{3}$ 4; \alpha(M)=219 \&; \alpha(N+)=33.9
166.56	9/2+	125.52 10	100	41.16	7/2+	M1	0.222	$\begin{array}{l} \alpha(\mathrm{N})=33.9 \ 12; \ \alpha(\mathrm{O})=0.01018 \ 17 \\ \mathrm{B}(\mathrm{E3})(\mathrm{W.u.})=0.062 \ 4 \\ \alpha(\mathrm{K})=0.193 \ 3; \ \alpha(\mathrm{L})=0.0239 \ 4; \\ \alpha(\mathrm{M})=0.00454 \ 7; \\ \alpha(\mathrm{N}+)=0.000822 \ 12 \end{array}$
255.48	1/2-,3/2-	255.53 10	100	0.0	1/2-	M1	0.0328	α (N)=0.000786 <i>12</i> ; α (O)=3.63×10 ⁻⁵ 6 α (K)=0.0286 <i>4</i> ; α (L)=0.00347 5; α (M)=0.000659 <i>10</i> ;
								$\begin{array}{l} \alpha(N)=0.00003910,\\ \alpha(N+)=0.000119517\\ \alpha(N)=0.000114116;\\ \alpha(O)=5.35\times10^{-6}8 \end{array}$
285.5 303.84	$(11/2^+)$ $(3/2)^+$	118.3 48.3 2	100 1.4	166.56 255.48	9/2 ⁺ 1/2 ⁻ ,3/2 ⁻	[E1]	1.246 23	$\begin{array}{l} \alpha(\mathrm{K}) = 1.074 \ 20; \ \alpha(\mathrm{L}) = 0.141 \ 3; \\ \alpha(\mathrm{M}) = 0.0266 \ 5; \\ \alpha(\mathrm{N}+) = 0.00458 \ 9 \\ \alpha(\mathrm{N}) = 0.00442 \ 9; \ \alpha(\mathrm{O}) = 0.000154 \end{array}$
		262.7	<1.3	41.16	7/2+	(E2)	0.0484	β B(E1)(W.u.)=6.7×10 ⁻⁶ α(K)=0.0409 6; $α$ (L)=0.00608 9; α(M)=0.001166 17; α(N+)=0.000203 3 α(N)=0.000196 3;
342.62	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	303.87 <i>10</i> 87.17 <i>10</i>	100	0.0 255.48	1/2 ⁻ 1/2 ⁻ ,3/2 ⁻	E1 M1	0.619	$\alpha(O)=6.79\times10^{-6} \ 10$ B(E2)(W.u.)<0.017 E _{γ} ,Mult.: from 1990Ro16. B(E1)(W.u.)=1.92×10^{-6} \ 19 $\alpha(K)=0.537 \ 8; \ \alpha(L)=0.0669 \ 10;$

γ ⁽¹¹⁵Ag) (continued)</sup>

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	α^{\ddagger}	Comments
342.62	1/2-,3/2-,5/2-	342.71 10		0.0	1/2-	M1,E2	0.0178 23	$\begin{array}{l} \alpha(\mathrm{N}+)=0.00230\ 4\\ \alpha(\mathrm{N})=0.00220\ 4;\\ \alpha(\mathrm{O})=0.0001012\ 15\\ \alpha(\mathrm{K})=0.0153\ 19;\ \alpha(\mathrm{L})=0.0020\ 4;\\ \alpha(\mathrm{M})=0.00038\ 8;\\ \alpha(\mathrm{N}+)=6.8\times10^{-5}\ 12 \end{array}$
396.51	(1/2)+	92.7 2	5	303.84	(3/2)+	E2	1.89	$\alpha(N)=6.5\times10^{-5} 12; \alpha(O)=2.72\times10^{-6} 2I \alpha(K)=1.418 23; \alpha(L)=0.388 7; \alpha(M)=0.0762 13; \alpha(N+)=0.01243 2I \alpha(N)=0.01223 2I; $
		140.6 2	16	255.48	1/2 ⁻ ,3/2 ⁻	(E1)	0.0603	$\begin{array}{l} \alpha(\text{O}) = 0.000201 \ 4 \\ \text{B(E2)(W.u.)} = 129 \ 14 \\ \alpha(\text{K}) = 0.0526 \ 8; \ \alpha(\text{L}) = 0.00633 \\ 10; \ \alpha(\text{M}) = 0.001195 \ 18; \\ \alpha(\text{N}+) = 0.000212 \ 3 \\ \alpha(\text{N}) = 0.000204 \ 3; \\ \alpha(\text{O}) = 8.57 \times 10^{-6} \ 13 \\ \end{array}$
		396.56 10	100	0.0	1/2-	(E1)		B(E1)(W.u.)= $1.70 \times 10^{-5} 8$ Mult.: from 1990Ro16. B(E1)(W.u.)= $4.74 \times 10^{-6} 4$ Mult.: from 1990Ro16
414.11	(7/2)+	110.4 2	28	303.84	(3/2)+	(E2)	1.015	$\alpha(K) = 0.789 \ 12; \ \alpha(L) = 0.184 \ 3; \alpha(M) = 0.0360 \ 6; \alpha(N+) = 0.00594 \ 10 \alpha(N) = 0.00583 \ 10; \alpha(O) = 0.0001156 \ 18 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10$
564.91		158.7 2 247.53 10 372.92 10 398.6 2	2.5 69 100	255.48 166.56 41.16 166.56	1/2 ⁻ ,3/2 ⁻ 9/2 ⁺ 7/2 ⁺ 9/2 ⁺			B(E2)(W.u.)=105 10
596.7 597.41	(13/2 ⁺) (5/2 ⁺)	523.68 <i>10</i> 311.2 200.7 <i>2</i> 293.56 <i>10</i> 430.9 <i>2</i>	100 11 8 10	41.16 285.5 396.51 303.84 166.56	$7/2^+$ (11/2 ⁺) (1/2) ⁺ (3/2) ⁺ 9/2 ⁺			
607.42		556.32 <i>10</i> 352.0 <i>2</i> 607.38 <i>10</i>	100	41.16 255.48 0.0	7/2 ⁺ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻			
635.36 664.16 766.09	(11/2+)	468.8 2 497.56 10 423.52 10 510.7 2	100 100	166.56 166.56 342.62 255.48	9/2+ 9/2+ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻ 1/2 ⁻ ,3/2 ⁻			
787.94		599.3 2 445.39 10 532.51 10 749		166.56 342.62 255.48 41.16	9/2 ⁺ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 7/2 ⁺			
803.2	(13/2 ⁺)	787.84 <i>10</i> 138.3 <i>3</i>	14 <i>I</i>	0.0 664.16	$1/2^{-}$ (11/2 ⁺)			
926.8	(15/2 ⁺)	030.0 3 330.1 3 641 3 3	100 6 100 5 23 8	100.56 596.7 285.5	$9/2^+$ (13/2 ⁺) (11/2 ⁺)			
1110.1	(13/2 ⁻)	445.1 3	100	664.16	$(11/2^+)$			

Continued on next page (footnotes at end of table)

 $\gamma(^{115}\text{Ag})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1123.4	$(15/2^+)$	526.7.3	100 25	596.7 (1	$3/2^+$)
	(837.9.3	50 17	285.5 (1	$1/2^+$
1298.9	$(17/2^+)$	372.1 3	100 25	926.8 (1	$5/2^{+}$
		702.2 3	25 8	596.7 (1	$3/2^{+}$
1480.4	$(15/2^+)$	677.2 3	100 5	803.2 (1	$3/2^{+}$
	(-1)	815.5 3	25 8	664.16 (1	$1/2^{+}$
1560.1	$(17/2^+)$	756.9 3	100	803.2 (1	$3/2^{+}$
1723.3	$(19/2^+)$	796.5 <i>3</i>	100	926.8 (1	$5/2^{+}$
1837.0	$(15/2^{-})$	276.9 3	100	1560.1 (1	$7/2^{+}$
1887.3	$(17/2^{-})$	407.0 3	75 4	1480.4 (1	$5/2^+$)
		777.2 3	100 5	1110.1 (1	$3/2^{-1}$
2146.6	$(17/2^{-})$	586.5 <i>3</i>	100 8	1560.1 (1	$7/2^+$)
		666.2 3	57 14	1480.4 (1	$5/2^{+}$
2385.6	$(19/2^{-})$	239.0 3	100 5	2146.6 (1	$7/2^{-}$
		825.5 3	50 17	1560.1 (1	$7/2^+$)
2418.6	$(21/2^+)$	858.6 <i>3</i>	100	1560.1 (1	$7/2^+$)
2602.1	$(21/2^{-})$	216.5 3	100	2385.6 (1	$9/2^{-})$
2624.4	$(19/2^{-})$	737.0 <i>3</i>	80 20	1887.3 (1	$7/2^{-}$
		787.4 <i>3</i>	100 20	1837.0 (1	$5/2^{-}$)
2634.3	$(23/2^+)$	911.0 <i>3</i>	100	1723.3 (1	$9/2^{+})$
2849.0	(_)	224.6 3	100 6	2624.4 (1	$9/2^{-})$
		430.4 <i>3</i>	22 8	2418.6 (2	$1/2^{+}$)
2856.2	$(23/2^{-})$	254.1 <i>3</i>	100	2602.1 (2	$1/2^{-}$)
2972.0	(_)	123.0 <i>3</i>	100	2849.0 (-)
3095.2	$(25/2^{-})$	239.0 3	100	2856.2 (2	$3/2^{-})$
3239.0	(_)	267.0 <i>3</i>	100	2972.0 (-)

[†] From ¹¹⁵Pd β^- decay.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

0.0 20.0 min 5

 $^{115}_{\ 47} Ag_{68}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{115}_{\ 47} Ag_{68}$

¹¹⁵₄₇Ag₆₈

¹¹⁵₄₇Ag₆₈