History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jean Blachot	NDS 113, 515 (2012)	1-Jan-2012				

Parent: ¹¹⁴Te: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=15.2 \text{ min } 7$; $Q(\varepsilon)=2.61\times10^3 4$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0 1996Zi01,1992ZiZW,1995ZiZZ: activity: ⁹²Mo(³²S,xpxn). Isotope separation, UNISOR, febiad source. Only the decay scheme (drawing) and comments are given in the 1996Zi01. The data are in 1995ZiZZ. Measured: γ , $\gamma\gamma$, $\gamma\gamma$ (t), ce, nuclear orientation.

Previous measurements: ¹¹⁴Sb(p,n) E=20 MeV (1976Wi10), ¹¹⁴Sn(³He,3n) E=40 MeV (1975WiZX,1976Wi11). Others: 1960Ma20, 1972Mi27, 1972Si28.

The decay scheme is as given by 1996Zi01.

The branching and the normalization derived by the evaluator are estimated from known J^{π} , but they have to be considered as preliminary.

¹¹⁴Sb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	3+	3.49 min 3	
27.41 16	1^{+}		
45.9 <i>4</i>	$(2^+), 4^+$	26 ns 3	$T_{1/2}$: from 1996Zi01.
54.58 16	3+	20.4 ns 9	$T_{1/2}$: from 1996Zi01, Other: 24 ns 5 (1975WiZX).
83.79 16	2+		$J^{\pi}: J^{\pi} = (1^+)$ in 1996Zi01.
144.96 <i>16</i>	2+		
264.28 15	4+		
271.94 15	1+		
344.26 18	3+		
491.88 <i>18</i>	2+		
506.72 17	(0^{+})		$J^{\pi}: J^{\pi} = (3^+)$ in 1996Zi01.
572.63 17	(2,3)		
691.08 <i>17</i>	2+		
763.35 18	$1^+, 2^+$		
805.75 17	2+		
871.66 <i>21</i>	1^{+}		
990.2 <i>3</i>	1,2		
1017.45 14	1,2		
1109.11 22			
1184.4 5			
1471.93 <i>17</i>	(1^{+})		
1670.54 20	(1^{+})		
1757.46 17	(1^{+})		
1924.20 15	(1^+)		
1970.6 <i>3</i>	(1^{+})		
1986.01 18	(1^{+})		
2139.6 <i>3</i>	(1^{+})		

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(4.7 \times 10^2 4)$	2139.6	0.6 3	5.19 22	0.6 3	εK=0.8499; εL=0.1189; εM+=0.03124
$(6.2 \times 10^2 \ 4)$	1986.01	3.6 19	4.62 23	3.6 19	εK=0.8523; εL=0.1171; εM+=0.03067
$(6.4 \times 10^2 \ 4)$	1970.6	0.26 14	5.78 24	0.26 14	εK=0.8524; εL=0.1169; εM+=0.03063
$(6.9 \times 10^2 4)$	1924.20	25 13	3.85 23	25 13	εK=0.8530; εL=0.1165; εM+=0.03051

Continued on next page (footnotes at end of table)

¹¹⁴ Te ε decay	1996Zi01,1992ZiZW,1976Wi11	(continued)
---------------------------------------	----------------------------	-------------

E(decay)	E(level)	Iβ ⁺ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(8.5 \times 10^2 \ 4)$	1757.46		2.8 14	4.97 22	2.8 14	εK=0.8544; εL=0.1154 6; εM+=0.03017 19
$(9.4 \times 10^2 4)$	1670.54		1.8 9	5.23 22	1.8 9	εK=0.8550; εL=0.1150; εM+=0.03004
$(1.14 \times 10^3 4)$	1471.93		4.8 24	4.96 22	4.8 24	εK=0.8555; εL=0.1142; εM+=0.02979
$(1.43 \times 10^3 4)$	1184.4	0.0020 12	0.16 9	6.62 25	0.16 9	av Eβ=244.84 22; εK=0.8461; εL=0.1120; εM+=0.02921
$(1.50 \times 10^3 \ 4)$	1109.11	0.021 11	1.0 5	5.87 22	1.0 5	av E β =277.58 8; ε K=0.8395; ε L=0.1110; ε M+=0.02893
$(1.59 \times 10^3 \ 4)$	1017.45	0.024 14	0.7 4	6.08 25	0.7 4	av $E\beta$ =317.50 <i>3</i> ; ε K=0.8282; ε L=0.1093; ε M+=0.02848
$(1.62 \times 10^3 \ 4)$	990.2	0.16 8	3.8 20	5.34 22	4 2	av E β =329.69 18; ε K=0.8240; ε L=0.1087; ε M+=0.02832
$(1.74 \times 10^3 \ 4)$	871.66	0.6 4	8 5	5.06 25	95	av E β =381.046 22; ε K=0.8022; ε L=0.1056; ε M+=0.02751
$(1.85 \times 10^3 \ 4)$	763.35	0.11 6	1.1 6	6.00 22	1.2 6	av E β =428.47 4; ε K=0.7763; ε L=0.1021; ε M+=0.02658
$(2.10 \times 10^3 \ 4)$	506.72	0.04 4	0.15 14	7.0 4	0.19 17	av E β =541.827 23; ε K=0.6947; ε L=0.09106; ε M+=0.02370
$(2.34 \times 10^3 \ 4)$	271.94	1.1 7	2.7 16	5.8 <i>3</i>	3.8 22	av E β =646.504 24; ε K=0.6041; ε L=0.07901; ε M+=0.02056
$(2.58 \times 10^3 4)$	27.41	16 9	24 12	4.94 22	40 20	av E β =756.484 23; ε K=0.5066; ε L=0.06612; ε M+=0.01720

ϵ, β^+ radiations (continued)

 † Absolute intensity per 100 decays.

$\gamma(^{114}\text{Sb})$

I γ normalization: I γ normalization is tentative and is based upon estimated feeding to the 27-keV level.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_f J_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
27.41 45.9	1 ⁺ (2 ⁺),4 ⁺	27.4 [#] 46.0 5	26.8 6	$\begin{array}{ccc} 0.0 & 3^+ \\ 0.0 & 3^+ \end{array}$	M1		5.91	α(K)=8 3; α(L)=7 7; α(M)=1.5 14 α(L)exp=0.55 8
54.58	3+	8.7 [#] 27.2 [#]		$45.9 (2^+),4^+$ 27.41 1 ⁺	+			
		54.6 4	41.6 8	0.0 3+	M1(+E2)	<0.15	3.69 12	$\alpha(K)=5.1 \ 21; \ \alpha(L)=3 \ 3; \ \alpha(M)=0.7$ $6; \ \alpha(N+)=0.14 \ 13$ $\alpha(L)\exp=0.45 \ 7$ B(M1)(W.u.)>0.00092; B(E2)(W.u.)<8.5
83.79	2+	56.4 <i>3</i>	5.5 2	27.41 1+				
		83.8 5	67.4 11	0.0 3+	M1+E2	0.44 2	1.38 2	$\alpha(K)=1.5 6; \alpha(L)=0.5 4;$ $\alpha(M)=0.10 8; \alpha(N+)=0.021 16$ $\alpha(K)\exp=1.27 20; \alpha(L)\exp=0.22 3$
144.96	2+	90.2 2	100.0 15	54.58 3+	M1+E2	0.63 2	1.28 2	$\alpha(K)=1.2 5; \alpha(L)=0.3 3;$ $\alpha(M)=0.07 6; \alpha(N+)=0.015 12$ $\alpha(K)=xp=0.87 12; \alpha(L)=xp=0.25 4$
		144.8 <i>3</i>	4.0 2	0.0 3+				
264.28	4+	209.8 3	4.0 2	54.58 3^+				
271.94	1+	188.1 <i>3</i>	4.9 2 49.9 9	83.79 2+	M1,E2		0.14 4	$\alpha(K)=0.12 \ 3; \ \alpha(L)=0.020 \ 9;$

Continued on next page (footnotes at end of table)

¹¹⁴₅₁Sb₆₃-3

¹¹⁴ Te ε decay	1996Zi01,1992ZiZW,1976Wi11	(continued)
---------------------------------------	----------------------------	-------------

$\gamma(^{114}\text{Sb})$ (continued) Ι_γ†@ α**&** δ^{\ddagger} Mult.[‡] E_{γ}^{\dagger} E_i (level) \mathbf{J}_{i}^{π} \mathbf{E}_{f} J_{f}^{π} Comments α(M)=0.0040 17; α(N+..)=0.0009 4 α(K)exp=0.092 17; α(L)exp=0.023 4 Mult.: $\alpha(K)$ exp gives $\delta < 0.7$; however, K/L requires pure E2. 271.94 E2 0.0732 1^{+} 244.4 4 85.0 13 27.41 1+ $\alpha(K)=0.053$ 7; $\alpha(L)=0.0081$ 23; α(M)=0.0016 5; α(N+..)=0.00036 10 α (K)exp=0.050 8; α (L)exp=0.0115 22 3+ 80.1 7 264.28 4+ 344.26 $2.5 \ 4$ 298.5 5 15.8 4 45.9 (2⁺),4⁺ 0.035 3 *α*(K)=0.0295 20; *α*(L)=0.0042 8; M1,E2 $\alpha(M) = 0.00084 \ 16;$ $\alpha(N+..)=0.000194$ $\alpha(K) \exp = 0.041$ 7 3+ 344.2 3 6.1 4 0.0 2^{+} 344.26 3+ 491.88 147.4 5 15.5 4 M1(+E2) < 0.50 0.232 21 α (K)exp=0.18 3; α (L)exp=0.029 6 346.9 6 47.1 9 144.96 2+ M1,E2 0.0225 9 $\alpha(K)=0.0192$ 5; $\alpha(L)=0.0026$ 4; $\alpha(M)=0.00052$ 7; $\alpha(N+..)=0.00012$ $\alpha(K) \exp = 0.018 4$ 408.1 8 11.2 4 83.79 2+ 437.2 4 54.58 3+ 21.1 5 506.72 (0^+) 234.7 2 11.6 4 271.94 1+ M1 0.076 8 $\alpha(K)=0.060$ 9; $\alpha(L)=0.009$ 3; $\alpha(M)=0.0018$ 6; $\alpha(N+..)=0.00042$ 12 $\alpha(K) \exp = 0.066 9$ 423.1 7 0.8 2 83.79 2+ 27.41 1+ M1,E2 0.0092 5 α =0.0092 5; α (K)=0.0079 5; 479.3 3 68.4 11 α (L)=0.00103; α (M)=0.00020 $\alpha(K) \exp = 0.0090 22$ 572.63 545.1 4 29.3 6 27.41 1+ (2,3)572.9 3 3.4 2 0.0 3+ 2^{+} 419.0 2 3.2 2 271.94 1+ 691.08 426.9 6 0.9 3 264.28 4+ 636.4 6 15.5 4 54.58 3+ 27.41 1+ 663.8 2 6.0 3 0.0 3+ 691.07 1.7 2 $1^+, 2^+$ 506.72 (0+) 763.35 256.4 3 1.1 2 271.5 4 4.3 2 491.88 2+ 271.94 1+ 491.4 7 1.6 2 83.79 2+ 679.6 3 9.2 3 27.41 1+ 736.1 3 16.9 5 805.75 2^{+} 461.4 2 6.1 3 344.26 3+ 534.0 5 2.7 2 271.94 1+ 83.79 2+ 722.0 4 9.4 3 751.3 4 2.3 254.58 3+ 778.5 4 27.41 1+ $10.2 \ 4$ 491.88 2+ 871.66 1^{+} 379.7 6 (M1,E2) 29.1 6 0.0174 2 $\alpha(K)=0.0149; \alpha(L)=0.00201 17;$ $\alpha(M)=0.00040$ 4 $\alpha(K) \exp = 0.027 4$ Mult.: $\alpha(K)$ exp is larger than $\alpha(K)(M1,E2)=0.0149.$ 726.8 4 91.9 14 144.96 2+ 83.79 2+ 787.7 3 3.3 2 817.1 *1* 3.2 2 54.58 3+ 0.0 3+ 871.9 12 5.4 2 990.2 1,2 483.8 3 4.1 2 506.72 (0+)

Continued on next page (footnotes at end of table)

1996Zi01,1992ZiZW,1976Wi11 (continued)

		$\gamma(^{114}\text{Sb})$ (continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger @}$	$E_f \qquad J_f^{\pi}$
990.2	1,2	844.9 <i>3</i>	51.6 2	144.96 2+	1757.46	(1^{+})	1673.6 <i>3</i>	9.7 <i>3</i>	83.79 2+
1017.45	1,2	745.5 2	7.7 3	271.94 1+	1924.20	(1^{+})	452.3 <i>3</i>	2.8 2	1471.93 (1 ⁺)
		753.2 2	4.6 2	264.28 4+			906.9 <i>3</i>	19.9 5	1017.45 1,2
		933.7 2	9.7 <i>3</i>	83.79 2+			1118.5 2	5.7 3	805.75 2+
		963.0 4	4.2 2	54.58 3+			1160.8 2	14.1 4	763.35 1+,2+
		990.0 <i>3</i>	4.9 4	27.41 1+			1233.1 2	3.8 2	691.08 2 ⁺
		1017.3 <i>3</i>	5.6 2	0.0 3+			1351.7 <i>3</i>	9.2 3	572.63 (2,3)
1109.11		602.2 4	2.4 2	506.72 (0 ⁺)			1417.4 2	75.7 12	506.72 (0 ⁺)
		1024.7 7	2.3 2	83.79 2+			1432.3 <i>3</i>	10.3 4	491.88 2+
		1054.6 2	8.3 <i>3</i>	54.58 3+			1652.2 2	31.4 7	271.94 1+
1471.93	(1^{+})	600.1 4	22.8 6	871.66 1+			1779.0 2	4.3 2	144.96 2+
		666.1 4	10.3 4	805.75 2+			1840.8 <i>3</i>	32.2 7	83.79 2+
		899.4 <i>3</i>	3.8 2	572.63 (2,3)			1896.8 <i>3</i>	98.5 15	27.41 1+
		980.0 2	9.7 <i>3</i>	491.88 2+	1970.6	(1^{+})	498.4 <i>3</i>	5.5 3	1471.93 (1 ⁺)
		1199.9 <i>3</i>	13.3 4	271.94 1+			1626.8 4	3.3 2	344.26 3+
		1444.5 <i>4</i>	2.7 2	27.41 1+	1986.01	(1^{+})	876.8 <i>5</i>	2.1 2	1109.11
1670.54	(1^{+})	653.1 <i>3</i>	5.8 <i>3</i>	1017.45 1,2			968.4 <i>4</i>	3.6 2	1017.45 1,2
		864.5 <i>13</i>	0.7 2	805.75 2+			995.6 10	1.5 3	990.2 1,2
		1097.9 4	4.2 2	572.63 (2,3)			1494.1 <i>4</i>	10.4 4	491.88 2+
		1398.6 2	11.5 4	271.94 1+			1714.4 2	5.7 3	271.94 1+
1757.46	(1^{+})	994.2 <i>4</i>	3.7 2	763.35 1+,2+			1902.0 <i>3</i>	17.6 5	83.79 2+
		1184.8 <i>3</i>	10.0 4	572.63 (2,3)			1958.4 2	4.7 3	27.41 1+
		1485.4 2	4.9 2	271.94 1+	2139.6	(1^{+})	1376.2 <i>3</i>	3.8 2	763.35 1+,2+
		1612.6 2	6.1 <i>3</i>	144.96 2+			1867.6 <i>3</i>	3.8 2	271.94 1+

[†] From 1995ZiZZ.

[‡] From ce data of 1995ZiZZ.

[#] Transition not seen, but required by $\gamma\gamma$. E γ is rounded-off value from adopted E(level) data.

¹¹⁴Te ε decay

[@] For absolute intensity per 100 decays, multiply by ≈ 0.08 .

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*x*} γ ray not placed in level scheme.

Decay Scheme

Intensities: Relative photon branching from each level

¹¹⁴₅₁Sb₆₃

Decay Scheme (continued)

Intensities: Relative photon branching from each level

 $^{114}_{51}$ Sb₆₃

Decay Scheme (continued)

Intensities: Relative photon branching from each level

 $^{114}_{51}{
m Sb}_{63}$