#### $^{114}$ Ag $\beta^-$ decay 1984Lu02

| History         |              |                     |                        |  |  |  |
|-----------------|--------------|---------------------|------------------------|--|--|--|
| Туре            | Author       | Citation            | Literature Cutoff Date |  |  |  |
| Full Evaluation | Jean Blachot | NDS 113, 515 (2012) | 1-Jan-2012             |  |  |  |

Parent: <sup>114</sup>Ag: E=0.0;  $J^{\pi}=1^+$ ;  $T_{1/2}=4.6$  s *1*;  $Q(\beta^-)=5087$  *5*;  $\%\beta^-$  decay=100.0 Activity: on-line mass separator OSIRIS. <sup>235</sup>U(n,F).

Measured:  $\gamma$ ,  $\gamma\gamma$ ,  $\beta\gamma$ ,  $\beta$ , Ge(Li), plastic detector.

1984Lu02 determined Q( $\beta^{-}$ ) to be 5160 110, compared with 5030 110 (1985Wa02).

The 1984Lu02 work supersedes previous work of 1975BrYN, 1972Wa06, 1971Ro19, and 1971Fo22.

## <sup>114</sup>Cd Levels

| E(level)   | $J^{\pi \dagger}$ | E(level)        | $J^{\pi \dagger}$ | E(level)   | $J^{\pi \dagger}$ | E(level)        | Jπ†             |
|------------|-------------------|-----------------|-------------------|------------|-------------------|-----------------|-----------------|
| 0          | $0^{+}$           | 1841.95 9       | 2+                | 2661.6 3   | 2+                | 3267.27 10      | 1+,2+           |
| 558.47 6   | $2^{+}$           | 1859.77 8       | $0^{+}$           | 2702.7 3   | 2+                | 3315.7 <i>3</i> | (0,1,2)         |
| 1134.49 9  | $0^{+}$           | 2048.11 18      | 2+                | 2800.35 8  | $(1^+, 2^+)$      | 3350.8 <i>3</i> | $0^+, 1^+$      |
| 1209.73 7  | $2^{+}$           | 2218.86 10      | $2^{+}$           | 2952.4 3   | 3+                | 3445.1 4        |                 |
| 1283.77 10 | 4+                | 2455.86 8       | 1-                | 3052.73 24 | $0^{+}$           | 3501.15 8       | $0^+, 1^+, 2^+$ |
| 1305.69 24 | $0^{+}$           | 2553.83 22      | $0^{+}$           | 3166.84 9  | $0^+, 1^+, 2^+$   |                 |                 |
| 1364.27 6  | $2^{+}$           | 2637.8 <i>3</i> | $0^{+}$           | 3213.2 3   | $(1,2)^{-}$       |                 |                 |

<sup>†</sup> From Adopted Levels.

#### $\beta^{-}$ radiations

| E(decay) | E(level) | Ιβ <sup>-†‡</sup> | Log ft | Comments                                                                |
|----------|----------|-------------------|--------|-------------------------------------------------------------------------|
| (1586 5) | 3501.15  | 0.29              | 5.4    | av Eβ=600.4 23                                                          |
| (1642 5) | 3445.1   | 0.10              | 5.9    | av $E\beta = 625.3 \ 23$                                                |
| (1736 5) | 3350.8   | 0.10              | 6.0    | av $E\beta = 667.4\ 23$                                                 |
| (1771 5) | 3315.7   | 0.06              | 6.3    | av $E\beta = 683.2 \ 23$                                                |
| (1820 5) | 3267.27  | 0.6               | 5.3    | av $E\beta = 705.0 \ 23$                                                |
| (1874 5) | 3213.2   | 0.08              | 6.2    | av $E\beta = 729.3 \ 23$                                                |
| (1920 5) | 3166.84  | 0.29              | 5.7    | av E $\beta$ =750.3 23                                                  |
| (2034 5) | 3052.73  | 0.21              | 6.0    | av $E\beta = 802.1 \ 23$                                                |
| (2135 5) | 2952.4   | 0.09              | 6.4    | av $E\beta = 848.0 \ 23$                                                |
| (2287 5) | 2800.35  | 0.06              | 6.7    | av E $\beta$ =917.7 23                                                  |
| (2384 5) | 2702.7   | 0.06              | 6.8    | av $E\beta = 962.8 \ 24$                                                |
| (2425 5) | 2661.6   | 0.10              | 6.6    | av E $\beta$ =981.8 24                                                  |
| (2449 5) | 2637.8   | 0.10              | 6.6    | av $E\beta = 992.8 \ 24$                                                |
| (2533 5) | 2553.83  | 1.4               | 5.5    | av Eβ=1031.7 24                                                         |
| (2631 5) | 2455.86  | 0.05              | 7.0    | av $E\beta = 1077.2 \ 24$                                               |
| (2868 5) | 2218.86  | 0.75              | 6.0    | av Eβ=1187.7 24                                                         |
| (3039 5) | 2048.11  | 0.07              | 7.2    | av E $\beta$ =1267.7 24                                                 |
| (3227 5) | 1859.77  | 1.4               | 6.0    | av $E\beta = 1356.1\ 24$                                                |
| (3245 5) | 1841.95  | 0.14              | 7.0    | av E $\beta$ =1364.5 24                                                 |
| (3723 5) | 1364.27  | 0.35              | 6.8    | av E $\beta$ =1589.8 24                                                 |
| (3781 5) | 1305.69  | 0.02              | 8.1    | av E $\beta$ =1617.5 24                                                 |
| (3803 5) | 1283.77  | 0.05              | 7.7    | av E $\beta$ =1627.9 24                                                 |
|          |          |                   |        | E(decay): Beta feedings from $1^+$ parent not possible to 1283, $4^+$ . |
| (3877 5) | 1209.73  | 1.0               | 6.5    | av E $\beta$ =1662.9 24                                                 |
| (3953 5) | 1134.49  | 1.7               | 6.3    | av E $\beta$ =1698.6 24                                                 |
| (4529 5) | 558.47   | 13                | 5.6    | av Eβ=1971.9 24                                                         |
| (5087 5) | 0        | 78                | 5.1    | av Eβ=2237.5 24                                                         |

Continued on next page (footnotes at end of table)

#### $^{114}$ Ag $\beta^-$ decay 1984Lu02 (continued)

### $\beta^{-}$ radiations (continued)

<sup>†</sup> From γ-ray transition intensity balance.
 <sup>‡</sup> Absolute intensity per 100 decays.

# $\gamma(^{114}\text{Cd})$

I $\gamma$  normalization: from I $\beta^{-}(g.s.)+\Sigma I(\gamma+ce)$  (g.s.)=100, and from private communication reported in 1984Lu02. A more recent measurement of the same author gives 0.176 17 (1990Fo07).

| $E_{\gamma}^{\dagger}$      | Ι <sub>γ</sub> @       | $E_i$ (level)     | $\mathbf{J}_i^{\pi}$  | $E_f$   | $\mathbf{J}_f^{\pi}$ |
|-----------------------------|------------------------|-------------------|-----------------------|---------|----------------------|
| 495.57 10                   | 0.50 5                 | 1859.77           | $0^{+}$               | 1364.27 | 2+                   |
| 558.45 <sup>‡</sup> 9       | 100.0 3                | 558.47            | 2+                    | 0       | $0^+$                |
| 576.10 <sup>‡</sup> 9       | 8.7 7                  | 1134.49           | $0^{+}$               | 558.47  | $2^{+}$              |
| 651.29 <sup>‡</sup> 7       | 4.3 2                  | 1209.73           | 2+                    | 558.47  | $2^{+}$              |
| 707.54 13                   | 0.41 5                 | 1841.95           | $2^{+}$               | 1134.49 | $0^+$                |
| 725.30 11                   | 0.21 2                 | 1283.77           | 4+                    | 558.47  | 2+                   |
| 742.6 3                     | 0.16 3                 | 2048.11           | 2+                    | 1305.69 | $0^{+}$              |
| 747.4 <sup>#</sup> 9        | 0.05 2                 | 1305.69           | $0^{+}$               | 558.47  | 2+                   |
| 805.88 <sup>‡</sup> 8       | 2.4 2                  | 1364.27           | 2+                    | 558.47  | 2+                   |
| 811.34 11                   | 1.7 <i>1</i>           | 3267.27           | $1^+, 2^+$            | 2455.86 | 1-                   |
| 1004.8 3                    | 0.20 4                 | 3052.73           | $0^+$                 | 2048.11 | $2^+$                |
| 1189.37 8                   | 1.1 1                  | 2553.83           | $0^+$                 | 1364.27 | 2+                   |
| $1209.70^{4}$ 6             | 1.9 <i>1</i>           | 1209.73           | 2+                    | 0       | $0^{+}$              |
| 1219.3 4                    | 0.21 5                 | 3267.27           | $1^+, 2^+$            | 2048.11 | $2^{+}$              |
| 1283.40 <sup>#</sup> 9      | 0.81 6                 | 1841.95           | 2+                    | 558.47  | 2+                   |
| 1301.23 <sup>‡</sup> 8      | 6.4 3                  | 1859.77           | $0^{+}$               | 558.47  | $2^{+}$              |
| 1364.35 <sup>‡</sup> 8      | 2.3 2                  | 1364.27           | $2^{+}$               | 0       | $0^+$                |
| 1397.0 2                    | 0.51 6                 | 3445.1            |                       | 2048.11 | $2^{+}$              |
| 1425.6 3                    | 0.73 8                 | 3267.27           | $1^+, 2^+$            | 1841.95 | $2^{+}$              |
| 1489.8 2                    | 0.97 10                | 2048.11           | 2+                    | 558.47  | 2+                   |
| 1660.38 <sup>‡</sup> 9      | 3.6 2                  | 2218.86           | 2+                    | 558.47  | 2+                   |
| 1802.6 4                    | 0.35 8                 | 3166.84           | $0^+, 1^+, 2^+$       | 1364.27 | $2^{+}$              |
| 1842.79 <sup>&amp;</sup> 15 | $0.5^{\&} 2$           | 3052.73           | $0^{+}$               | 1209.73 | $2^{+}$              |
| 1842.8 <sup>&amp;</sup> 15  | 0.3 <sup>&amp;</sup> 1 | 1841.95           | $2^{+}$               | 0       | $0^+$                |
| 1903.5 <i>3</i>             | 0.31 4                 | 3267.27           | $1^+, 2^+$            | 1364.27 | 2+                   |
| 1957.5 2                    | 0.39 4                 | 3166.84           | $0^+, 1^+, 2^+$       | 1209.73 | $2^{+}$              |
| 1995.63 <sup>‡</sup> 10     | 6.0 <i>3</i>           | 2553.83           | $0^{+}$               | 558.47  | $2^{+}$              |
| 2079.3 2                    | 0.49 5                 | 2637.8            | $0^{+}$               | 558.47  | 2+                   |
| 2103.1 2                    | 0.50 5                 | 2661.6            | 2+                    | 558.47  | 2+                   |
| 2136.95 <i>15</i>           | 0.70 6                 | 3501.15           | $0^+, 1^+, 2^+$       | 1364.27 | 2+                   |
| *23/2.5 4                   | 0.174                  | 2052 4            | 2+                    | EE0 17  | 2+                   |
| 2393.9 3                    | 0.32 5                 | 2952.4            | 3                     | 558.47  | 2.                   |
| 2455.76" 10                 | 1.8 /                  | 2455.86           | $1^{-}$               | 0       | $0^+$                |
| 2008.31 13                  | 0.00 /                 | 3100.84<br>2702 7 | $0^{+}, 1^{+}, 2^{+}$ | 558.47  | 2 ·<br>0+            |
| 2102.10                     | 0.23 /                 | 2102.1            | (0.1.2)               | 558 /17 | 0<br>2+              |
| 279232                      | 0.29 5                 | 3350.8            | (0,1,2)<br>$0^+ 1^+$  | 558 47  | $\frac{2}{2^{+}}$    |
| 2800.3.3                    | 0.26.3                 | 2800.35           | $(1^+, 2^+)$          | 0       | $\tilde{0}^{+}$      |
| 2942.56 15                  | 0.68 5                 | 3501.15           | $0^+, 1^+, 2^+$       | 558.47  | $2^{+}$              |
| 3213.2 4                    | 0.43 4                 | 3213.2            | (1,2)                 | 0       | $0^+$                |

 $^{114}\mathrm{Ag}\,\beta^{-}$  decay 1984Lu02 (continued)

 $\gamma(^{114}$ Cd) (continued)

- <sup>†</sup> From 1984Lu02.
  <sup>‡</sup> Seen already by 1972Wa06 and 1975BrYN.
  <sup>#</sup> Seen also by 1972Wa06.
  <sup>@</sup> For absolute intensity per 100 decays, multiply by 0.204 *13*.
  <sup>&</sup> Multiply placed with intensity suitably divided.
- $x \gamma$  ray not placed in level scheme.

### $^{114}$ Ag $\beta^-$ decay 1984Lu02

### Decay Scheme

