¹⁰⁰Mo(¹⁸O,5nγ) **1998Se14,1998Ch38**

History						
Type Author		Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 111, 1471 (2010)	1-May-2009			

1998Se14: ¹⁰⁰Mo(¹⁸O,5n γ) E= 94 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) using 20 Ge detectors and 71-detector BGO filter at "TASCC" facility at "CHALK RIVER".

See 1998Se14 for detailed orbital configurations for each band.

1998Ch39: ¹⁰⁰Mo(¹⁸O,5n γ) E= 70 MeV. Measured E γ , I γ , $\gamma\gamma$, using the OSIRIS spectrometer array.

The data of 1998Se14 are adopted. Only a figure is given in 1998Ch38. without table, however 1998Ch38 agree with the 1998Se14 until the 8810 level $(43/2^{-})$.

¹¹³Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	$1/2^{+}$	
77.4 [#]	$7/2^+$	
738.4 [#]	$\frac{1}{11/2^{-}}$	Additional information 1.
1906.3 5	$15/2^{-}$	
2806.1 7	19/2-	
2973.8 7	19/2-	
3091.0 7	19/2-	
3128.4 7	$21/2^{-}$	
3222.17	19/2	
3409.1 7	17/2	
3419.79	21/2	
3437.09 3001 3 ^{<i>a</i>} 7	23/2	
3971.6 8	23/2 $23/2^{(+)}$	
$4051.4^{@}$ 7	21/2	
4057.1 9	$\frac{25}{2^+}$	
4474.3 10	$27/2^+$	
4713.5 ^a 8	$27/2^{-}$	
4751.6 [@] 8	25/2	
5533.7 [@] 8	29/2	
5604.9 11	$31/2^{+}$	
5644.8 ^{<i>a</i>} 9	31/2-	
6384.6 ^{0} 9	33/2	
6681.5 ^{<i>u</i>} 10	35/2-	
7321.3 10	37/2	
7882 3 & 11	39/2	
$8347.0^{@}12$	<i>JJZ</i> <i>A</i> 1/2	
8810.9 ^{<i>a</i>} 12	$43/2^{-}$	
9013.2 ^{&} 12	43/2-	
9466.1 [@] 13	45/2	
9935.6 ^a 13	47/2-	
10208.9 <mark>&</mark> <i>13</i>	$47/2^{-}$	
10588.3 [@] 14	49/2	
11241.2 ^{<i>a</i>} 14	51/2-	
11404.3 ^{&} <i>14</i>	$51/2^{-}$	
11722.7 [@] 15	53/2	

¹⁰⁰Mo(¹⁸O,5nγ) **1998Se14,1998Ch38** (continued)

¹¹³Sn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
12642.1 ^{&} 14	$55/2^{-}$	$14031.8^{\&} 15$	59/2 ⁻	15653.1 ^{&} 16	$(63/2^{-})$	17503.5 ^{&} 19	$(67/2^{-})$
12730.0° 14 $13033.8^{\textcircled{0}}$ 15	(33/2) 57/2	$14285.7^{@}15$ $14576.7^{@}16$	(61/2)	16309.0° 18	(65/2)	18219.8? 20	(09/2)

[†] From least-squares fit to $E\gamma's$.

[±] From 1998Se14, based on their $\gamma\gamma(\theta)$ (DCO) data and band assignments.

From Adopted Levels, rounded-off value.

^(a) Band(A): $\Delta J=2$ band based on on 17/2 at 3409.5 keV, [21,3].

& Band(B): $\Delta J=2$ band based on on $39/2^-$ at 7883.1 keV, [21,4].

^{*a*} Band(C): $\Delta J=2$ band based on on $31/2^{-}$ at 5645.6 keV, [20,3].

$\gamma(^{113}\text{Sn})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
77.4 [‡]		77.4	$7/2^{+}$	0.0	$1/2^{+}$		
85.5.5	<1.0	4057.1	$25/2^{+}$	3971.6	$23/2^{(+)}$	(M1+E2)	
154.5 5	<1.0	3128.4	$\frac{21}{2^{-1}}$	2973.8	$19/2^{-}$	M1.E2	
291.3 5	1.9 1	3419.7	$\frac{21}{2^{-}}$	3128.4	$21/2^{-}$	M1+E2	DCO= 1.16 <i>12</i> .
322.4 5	20.3 6	3128.4	$21/2^{-}$	2806.1	$19/2^{-}$	M1+E2	DCO= 0.84 2.
329.1 5	7.8 2	3457.6	$23/2^{-}$	3128.4	$21/2^{-}$	M1+E2	DCO= 0.86 3.
417.2 5	4.5 1	4474.3	$27/2^+$	4057.1	$25/2^+$	M1,E2	DCO= 0.89 <i>3</i> .
551.9 5	2.1 1	3971.6	$23/2^{(+)}$	3419.7	$21/2^{-}$	(E1)	DCO= 0.66 7.
599.4 5	7.6 2	4057.1	$25/2^+$	3457.6	$23/2^{-}$	È1	DCO = 0.785.
642.0 5	2.2 1	4051.4	21/2	3409.1	17/2	E2	DCO= 1.02 <i>13</i> .
661 0 [‡]		738 4	$11/2^{-}$	774	7/2+		
678.6.5	12.2.4	3901.3	$\frac{11}{2}$ $\frac{23}{2}^{-}$	3222.7	$19/2^{-}$	E2	DCO = 0.97.9
700 3 5	382	4751.6	25/2	4051.4	$\frac{17}{2}$	E2	DCO = 1.02.11
739.4.5	2.1 I	6384.6	33/2	5644.8	$\frac{21}{2}^{-}$	D	DCO = 0.61.20
782.3 5	10.9 4	5533.7	29/2	4751.6	25/2	E2	DCO = 0.95 8.
810.3 5	23.2 8	3901.3	$\frac{23}{2}$	3091.0	$19/2^{-}$	E2	$DCO = 1.00 \ 2$ for $810.3 + 812.0$.
812.0 5	32.8 11	4713.5	$27/2^{-}$	3901.3	$23/2^{-}$	E2	DCO= 1.00 2 for 810.3+812.0.
820.3 5	3.8 2	5533.7	29/2	4713.5	$27/2^{-}$	D	DCO= 0.58 9.
843.3 5	9.3 <i>3</i>	3971.6	$23/2^{(+)}$	3128.4	$21/2^{-}$	(E1)	DCO= 0.56 3.
850.5 5	4.3 2	4751.6	25/2	3901.3	$23/2^{-}$	D	DCO= 0.85 3 for 850.5+851.3.
851.3 5	11.8 4	6384.6	33/2	5533.7	29/2	E2	DCO= 0.85 3 for 850.5+851.3.
899.9 5	38.9 <i>13</i>	2806.1	$19/2^{-}$	1906.3	$15/2^{-}$	E2	DCO= 0.97 3.
928.4 5	≤1.0	8810.9	$43/2^{-}$	7882.3	39/2-	E2	
930.8 5	30.9 10	5644.8	31/2-	4713.5	$27/2^{-}$	E2	DCO= 0.98 2.
936.7 5	15.9 5	7321.3	37/2	6384.6	33/2	E2	DCO= 0.97 4.
960.7 5	1.6 <i>I</i>	4051.4	21/2	3091.0	19/2-	D	
1025.7 5	12.6 4	8347.0	41/2	7321.3	37/2	E2	DCO= 0.98 8 for 1025.7+1027.4.
1027.4 5	7.3 3	8810.9	43/2-	7783.6	39/2-	E2	DCO= 0.98 8 for 1025.7+1027.4.
1036.7 5	23.2 7	6681.5	35/2-	5644.8	$31/2^{-}$	E2	$DCO= 0.98 \ 3.$
1067.4 5	9.1 5	2973.8	19/2-	1906.3	$15/2^{-}$	E2	DCO= 1.01 10.
1102.3 5	13.6 4	7783.6	39/2-	6681.5	35/2-	E2	DCO= 1.00 5.
1119.1 5	7.8 3	9466.1	45/2	8347.0	41/2	E2	$DCO = 0.98 \ 3 \text{ for } 1119.1 + 1122.2.$
1122.2 5	6.9 <i>3</i>	10588.3	49/2	9466.1	45/2	E2	$DCO = 0.98 \ 3 \text{ for } 1119.1 + 1122.2.$
1124.7 5	6.3 2	9935.6	47/2-	8810.9	43/2-	E2	$DCO = 0.92 \ 14.$
1130.6 5	3.8 1	5604.9	$31/2^{+}$	4474.3	$27/2^+$	E2	$DCO = 1.09 \ 10.$
1130.8.5	3.9.2	9013.2	$43/2^{-}$	7882.3	$39/2^{-}$	E2	DCO = 0.93 / 9

Continued on next page (footnotes at end of table)

¹⁰⁰Mo(¹⁸O,5nγ) **1998Se14,1998Ch38** (continued)

$\gamma(^{113}\text{Sn})$ (continued) Mult.[†] Eγ Iγ E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_f^{π} Comments 1134.4 5 7.2 2 11722.7 53/2 10588.3 49/2 E2 DCO= 0.95 6. 1906.3 100.0 37 1167.9 5 $15/2^{-}$ 738.4 11/2-E2 1184.9 5 31.0 11 3091.0 $19/2^{-}$ 1906.3 15/2-E2 DCO= 0.98 4. DCO= 1.07 9 for 1195.4+1195.7. 1195.4 5 $2.6\ 2$ 11404.3 $51/2^{-}$ 10208.9 47/2-E2 1195.7 5 3.5 2 10208.9 9013.2 43/2-E2 DCO= 1.07 9 for 1195.4+1195.7. $47/2^{-}$ 1200.7 5 4.2 2 7882.3 39/2-6681.5 35/2-E2 DCO= 1.07 15. 1229.6 5 4.3 2 9013.2 $43/2^{-}$ 7783.6 39/2-E2 DCO= 1.06 13. 11404.3 51/2-DCO= 1.04 14. 1237.8 5 2.2 1 12642.1 $55/2^{-}$ E2 DCO= 1.05 9. 1305.6 5 3.9 1 11241.2 $51/2^{-1}$ 9935.6 47/2-E2 E2 1311.1 5 3.2 1 13033.8 57/2 11722.7 53/2 DCO= 0.97 6. E2 1316.4 5 17.7 7 3222.7 $19/2^{-}$ 1906.3 15/2-DCO= 1.01 7. 1389.7 5 1.9 *1* 14031.8 $59/2^{-}$ 12642.1 55/2-E2 DCO= 1.11 18. $(55/2^{-})$ 11241.2 51/2-1494.8 5 1.5 1 12736.0 (E2) 1502.6 5 3409.1 1906.3 15/2-3.3 3 17/2D (61/2) 1542.9 5 1.8 1 14576.7 13033.8 57/2 (E2) 1549.7 5 1.2 1 14285.7 $59/2^{-}$ 12736.0 (55/2-) (E2) 1621.3 5 ≤ 1.0 15653.1 $(63/2^{-})$ 14031.8 59/2-(E2) 14285.7 59/2-1704.3 10 15990.0 (E2) ≤ 1.0 $(63/2^{-})$ (65/2) 1732.3 10 16309.0 14576.7 (61/2) (E2) ≤ 1.0 1850.4 10 ≤ 1.0 17503.5 $(67/2^{-})$ 15653.1 (63/2-) (E2) 1910.8[#] 10 ≤ 1.0 18219.8? (69/2)16309.0 (65/2) (E2)

[†] Primarily from DCO.

[‡] Rounded-off value from adopted gammas.

[#] Placement of transition in the level scheme is uncertain.

 $^{113}_{50}$ Sn₆₃-4

 $^{113}_{50}{
m Sn}_{63}$

 $^{113}_{50}{
m Sn}_{63}$

¹⁰⁰Mo(¹⁸O,5nγ) 1998Se14,1998Ch38

 $^{113}_{50}{
m Sn}_{63}$