¹¹³In IT decay (99.476 min) 1971Ha18

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	NDS 111, 1471 (2010)	1-May-2009					

Parent: ¹¹³In: E=391.691 8; $J^{\pi}=1/2^{-}$; $T_{1/2}=99.476 \text{ min } 23$; %IT decay=100.0

¹¹³In-%IT decay: From the presence of Cd K x rays from a ¹¹³In (99 min) source, 1970Ra05 (and 1969RaZP) reported ε decay of this level with $I_{\varepsilon} = 0.07\%$ *l*. Such a transition to ¹¹³Cd would be 1st forbidden, 1/2⁻ to 1/2⁺, and would have a log *ft* of 5.1. which is possible but unlikely since the log *ft* systematics (1998Si17) indicate that is the lower limit of the observed values. Also, 1970De22 (see also 1969De25) repeated the experiment and placed a limit of <0.0036% on this ε transition for which the log *ft* is >6.5. Such an electron capture branch is therefore negligible and has not been included in this scheme.

Evaluation by M.-M. Be, March 1999 This evaluation was done as part of a collaboration of evaluators from Laboratoire National Henri Becquerel (LNHB) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; HMS Sultan and AEA Technology in the United Kingdom; Khlopin Radium Institute (KRI) in Russia; Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED) in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering and Environmental Laboratory (INEEL) in the United States.

Measured Ice, Ice(K) from (ce)(K x ray)-coin, I_γ, 1971Ha18.

 α : Additional information 1.

¹¹³In Levels

 $\gamma(^{113}In)$

E(level)	\mathbf{J}^{π}	T _{1/2} †
0.0	9/2+	stable
391.699 <i>3</i>	$1/2^{-}$	1.6579 h 4

[†] See ¹¹³In Adopted Levels.

						/(11	
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α	Comments
391.698 <i>3</i>	64.94 17	391.699	1/2-	0.0 9/2+	M4	0.551	α(K)=0.444 7; α(L)=0.0862 12; α(M)=0.01750 25; α(N)=0.00316 5; α(O)=0.000194 3 α(N+)=0.00335 5 B(M4)(W.u.)=8.31 9 Eγ: from 2000He14 evaluation. Iγ: From Iγ(391) = [100.0 - Ti(646)] / [1 + α(391)]; the uncertainty is all from the 0.26% uncertainty in (1 + α). Mult.: from α(K)exp=0.437 7, α(exp)=0.540 7, α(K)exp/α(L+)exp=4.21 8 (1971Ha18); α(L)exp/α(M)exp, α(L)exp/α(N)exp, α(M)exp/α(N)exp (1972Ko38). Others: 1970Go48, 1970Le07, 1971GoYM, 1985HaZA. α: α and αK are from 1985HaZA evaluation of measured values; these values average 3% lower than the theoretical values of 1978Ro21. The αL and αM were then computed as 3% lower than the corresponding theoretical values.

[†] Absolute intensity per 100 decays.

¹¹³In IT decay (99.476 min) 1971Ha18

¹¹³₄₉In₆₄