Adopted Levels, Gammas

History							
Туре	e Author		Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	21-Jan-2015				

 $S(n)=13550 \ 90; \ S(p)=-973.5 \ 26; \ Q(\alpha)=3484 \ 7 2012Wa38$

S(2p)=1388 10, Q(ep)=8010 13 (2012Wa38). S(2n)=25100 (theory,1997Mo25).

1984Fa04, 1987Gi02: production and identification: 250 MeV ⁵⁸Ni on ⁵⁸Ni. Analyzed by a gas-detector system in a backward position during the beam pause. The identification was based on the fact that the ¹¹⁶Ba compound nucleus with low excitation energy allows only two channels: p2n giving ¹¹³Cs and α p2n giving ¹⁰⁹I. The proton line of ¹⁰⁹I has a different energy. It can also be produced by ⁵⁴Fe(⁵⁸Ni,p2n). Preliminary T_{1/2} measurement of 0.9 μ s +13–4 in 1984Fa04 was reanalyzed in their later paper 1987Gi02 to 33 μ s 7 with better statistics. Since then several other measurements have been made. 1993HeZV is a later work from the same group. Experiments at Munich accelerator facility.

2003YuZW, 1998GrZT, 1998GrZZ, 1998Ba13: ¹¹³Cs produced by ⁵⁸Ni(⁵⁸Kr,p2n) at E=230 MeV. Measured E(p), implant-decay time and spatial correlations, T_{1/2}, experiments at HRIBF-ORNL and ATLAS-ANL facility.

1994Pa12: Facility: Daresbury, UK; Beam: E(⁵⁸Ni)=529 MeV; Target: 520 µg/cm² isotopically enriched in ⁵⁸Ni; Detectors:

Daresbury Recoil Mass Separator, one DSSSD; Measured: E(p), $E(\alpha)$, implant-decay time and spatial correlations, $T_{1/2}$.

1995Ho26: measured E(p) and $T_{1/2}$ using SHIP at GSI facility; also a review article. See also GSI-93-04 (preprint by S. Hofmann). 2015Wa02 (also 2012Wa10): 58 Ni(58 Ni,2pn),E=230 MeV; measured E(p), $T_{1/2}$ at JYFL facility.

Consult NSR database for a large number of theory references for calculation of half-life of proton emitter ¹¹³Cs.

¹¹³Cs Levels

Cross Reference (XREF) Flags

A 58Ni(58Ni,p2n γ)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	(3/2+)	17.7 μs 4	A	%p=100 No evidence for α decay was found by 1994Pa12. T _{1/2} : LWM weighted average of 17.1 μs 2 (2015Wa02, from 18,000 proton events); 18.3 μs 3 (2003YuZW, 1998GrZT, from 5500 proton events, earlier value from this group was 16.7 μs 7 in 1998Ba13 based on 600 events), and 17 μs 2 (1994Pa12). Others: 22 μs 8 (1993HeZV, earlier values from this group: 33 μs 7 in 1987Gi02, 0.9 μs +13-4 in 1984Fa04), 28 μs 7 (1995Ho26). Weighted average of of values from 2015Wa02, 2003YuZW, 1995Ho26, 1994Pa12 and 1993HeZV is also 17.7 μs 4. J ^π : from the proposed π3/2[411] configuration, based on a comparison between the measured proton-decay T _{1/2} and theoretical values (1998GrZZ); 3/2 ⁺ is also consistent with systematics presented by 2006De07. Measured E(p)=969 keV 8 (2015Wa02,2012Wa10), 960 keV 3 (1995Ho26), 959 keV 6 (1994Pa12), 974 keV 4 (1993HeZV; earlier value: 980 keV 80 in 1987Gi02 and 1984Fa04). σ =20 μb 10 (2015Wa20), ≈30 μb (1987Gi02).
74.1 3	$(5/2^+)$		Α	
165.1 4	$(7/2^+)$		Α	
166.30 20	$(5/2^+)$		Α	
549.0 5	$(11/2^+)$		Α	
677.0 [‡] 4	$(9/2^+)$		Α	
1145.2 5	$(15/2^+)$		Α	
1287.0 [‡] 6	$(13/2^+)$		Α	
1882.3 [†] 6	$(19/2^+)$		Α	
2005.7 [‡] 7	$(17/2^+)$		Α	
2696.0 [†] 8	$(23/2^+)$		A	

Adopted Levels, Gammas (continued)

E(level)	\mathbf{J}^{π}	XREF	E(level)	\mathbf{J}^{π}	XREF	E(level)	\mathbf{J}^{π}	XREF
2816.9 [‡] 8	$(21/2^+)$	Α	4564.8 [†] 12	$(35/2^+)$	Α	6473.9 [‡] 17	$(41/2^+)$	A
3204.0 [†] 10	$(27/2^+)$	A	4828.3 [‡] <i>13</i>	$(33/2^+)$	A	7239.9 [†] 20	$(47/2^+)$	A
3475.3 [‡] 9	$(25/2^+)$	Α	5384.0 [†] 15	$(39/2^+)$	Α	7425 [‡] 3	$(45/2^+)$	A
3820.0 [†] 11	$(31/2^+)$	Α	5621.6 [‡] <i>14</i>	$(37/2^+)$	Α	8290 [†] 3	$(51/2^+)$	Α
4093.2 [‡] 11	$(29/2^+)$	Α	6281.9 [†] <i>17</i>	$(43/2^+)$	Α			

¹¹³Cs Levels (continued)

[†] Band(A): $\pi 3/2$ [422], $g_{7/2}$ orbital. First backbend at $\hbar \omega \approx 0.35$ MeV is due to alignment of pair of $h_{11/2}$ neutrons, and the second backbend at $\hbar \omega \approx 0.45$ MeV is due to alignment of a pair of $h_{11/2}$ protons. This configuration is in contrast to $\pi h_{11/2}$ proposed in 2003YuZW and 1998GrZT.

[±] Band(B): $\pi 1/2[420]$, $d_{5/2}$ orbital First backbend at $\hbar \omega \approx 0.35$ MeV is due to alignment of pair of $h_{11/2}$ neutrons, and the second backbend at $\hbar \omega \approx 0.45$ MeV is due to alignment of a pair of $h_{11/2}$ protons.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}
74.1	$(5/2^+)$	74.1 3	100	0.0	$(3/2^+)$	(M1)	2.13 4
165.1	$(7/2^+)$	91.0 2	100	74.1	$(5/2^+)$	(M1)	1.179
166.30	$(5/2^+)$	92 #		74.1	$(5/2^+)$		
		166.3 2	100 20	0.0	$(3/2^+)$	(M1)	0.216
549.0	$(11/2^+)$	383.9 2	100	165.1	$(7/2^+)$	Q	
677.0	$(9/2^+)$	510.7 <i>3</i>	100	166.30	$(5/2^+)$	Q	
1145.2	$(15/2^+)$	596.2 2	100	549.0	$(11/2^+)$	Q	
1287.0	$(13/2^+)$	610.0 4	100	677.0	$(9/2^+)$	Q	
1882.3	$(19/2^+)$	737.1 4	100	1145.2	$(15/2^+)$	Q	
2005.7	$(17/2^+)$	718.7 4	100	1287.0	$(13/2^+)$	(Q)	
2696.0	$(23/2^+)$	813.7 5	100	1882.3	$(19/2^+)$	Q	
2816.9	$(21/2^+)$	811.2 4	100	2005.7	$(17/2^+)$	Q	
3204.0	$(27/2^+)$	508.0 5	100	2696.0	$(23/2^+)$	(Q)	
3475.3	$(25/2^+)$	658.4 <i>4</i>	100	2816.9	$(21/2^+)$	Q	
3820.0	$(31/2^+)$	616.0 4	100	3204.0	$(27/2^+)$	Q	
4093.2	$(29/2^+)$	617.9 6	100	3475.3	$(25/2^+)$	Q	
4564.8	$(35/2^+)$	744.8 5	100	3820.0	$(31/2^+)$	(Q)	
4828.3	$(33/2^+)$	735.1 6	100	4093.2	$(29/2^+)$	(Q)	
5384.0	$(39/2^+)$	819.2 9	100	4564.8	$(35/2^+)$		
5621.6	$(37/2^+)$	793.3 7	100	4828.3	$(33/2^+)$	Q	
6281.9	$(43/2^+)$	897.9 8	100	5384.0	$(39/2^+)$	(Q)	
6473.9	$(41/2^+)$	852.3 8	100	5621.6	$(37/2^+)$	Q	
7239.9	$(47/2^+)$	958 <i>1</i>	100	6281.9	$(43/2^+)$	Q	
7425	$(45/2^+)$	951 2	100	6473.9	$(41/2^+)$		
8290	$(51/2^+)$	1050 2	100	7239.9	$(47/2^+)$		

 $\gamma(^{113}Cs)$

[†] From ⁵⁸Ni(⁵⁸Ni,2pnγ).

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ► _ _ _ _ 4 1050 100 $(51/2^+)$ 8290 4 25, 100 1 2% 0100 $(45/2^+)$ 7425 $(47/2^+)$ 7239.9 + 852,3 0100 - $(41/2^+)$ 6473.9 $(43/2^+)$ 6281.9 + 333,30100 | 486 | 1918 | $(37/2^+)$ 5621.6 + 335, 00 100 - $(39/2^+)$ 5384.0 1 24 | | (0100 - $(33/2^+)$ 4828.3 1 00/0 01/0 H $(35/2^+)$ 4564.8 + 010 0100 1 (29/2+) 4093.2 + ^{658,4}1 ,010 + 308 | - (0) | - 0 $(31/2^+)$ 3820.0 $(25/2^+)$ 3475.3 | 001 g 100 | , ^{8/3,2} 0,00 $(27/2^+)$ 3204.0 $\frac{(21/2^+)}{(23/2^+)}$ 2816.9 *⊢ 21_{8,2}0,00*, 1 2696.0 9010 1:55' $(17/2^+)$ 2005.7 1882.3 | 000 010 | (19/2+) 3062 0100 - $(13/2^+)$ 1287.0 1 310,2 01,0 1 $(15/2^+)$, ³83.9 (10) -1145.2 001 (110) (11) 100 $(9/2^+)$ 677.0 $(11/2^+)$ ક 549.0 $\frac{(11/2)}{(5/2^+)}$ 166.30 -F -6 0,-9 C 165.1 $\frac{(1)}{(5/2^+)}$ 74.1 ¥ ¥ 17.7 μs 4

¹¹³₅₅Cs₅₈

Adopted Levels, Gammas

¹¹³₅₅Cs₅₈