¹¹³Pd β^- decay 1988FoZY,1990Ro16

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 111, 1471 (2010)	1-May-2009

Parent: ¹¹³Pd: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=93$ s 5; $Q(\beta^-)=3340 \ 30$; $\%\beta^-$ decay=100.0

Activity: ²³⁵U(n,f) on-line mass separator OSIRIS (1988FoZY).

Measured γ , I γ , $\gamma\gamma$, $\gamma(t)$, β , $\beta\gamma$, ce,Ge(Li), Si detector (1988FoZY).

²⁴⁹Cf(n,F) radiochemical separation (1990Ro16), measured: γ , $\gamma\gamma$, $\gamma\gamma$ (t).

Others: 1958A190, 1968Kj01, 1970Ar19, 1975BrYM, 1981Me17.

Decay mode: 81.5% 20 of ¹¹³Pd decay is via 5.37-h ¹¹³Ag and 18.5% 20 is via 68.7-s ¹¹³Ag, from I γ (5.37-h ¹¹³Ag)/I γ (68.7-s ¹¹³Ag) (1975BrYM). Other: from I β (5.37-h ¹¹³Ag)/I β (68.7-s ¹¹³Ag), 90% 5 of ¹¹³Pd decay is via 5.37-h ¹¹³Ag (1958Al90).

E(level)	$J^{\pi \dagger}$	$T_{1/2}$ [‡]	Comments
0.0	1/2-	5.37 h 5	
43.53 14	7/2+	68.7 s 16	
139.30 15	9/2+		
222.08 [#] 13	$3/2^{+}$	23 ns 2	$J^{\pi}: 3/2^+.$
270.82 14	$(3/2^{-})$		$J^{\pi}: 3/2^{-}.$
273.59 16	(1/2)	30 ns +30–15	J^{π} : 1/2 ⁺ ,3/2 ⁺ .
280.0 [#]	$1/2^{+}$		
366.84 20	$(5/2^{-})$		$J^{\pi}: 5/2^{-}.$
369.80 [#] 17	7/2+	<0.8 ns	
476.70 [#] 14	$5/2^{+}$	<0.5 ns	
526.16 16			
607.06 23			
611.31 25	$(3/2^{-})$		
673.35 23			
781.79 20	$(5/2^{-})$		
783.16 14	(3/2, 5/2, 7/2)		J^{n} : $5/2^{+}, 7/2^{+}$.

¹¹³Ag Levels

[†] Adopted values. J^{π} given by 1988FoZY are shown under comments.

^{\ddagger} Levels>43 keV T_{1/2} are from 1988FoZY, other from Adopted Levels.

[#] Band(A): intruder rotational band (1990Ro16) with α =17.23, E0=228.9 keV a=-1.92.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft			Comments
$(2.56 \times 10^3 \ 3)$	783.16	7.2	6.1	av E β =	1054 70	
$(2.56 \times 10^3 \ 3)$	781.79	0.46	7.3	av Eβ=	1054 70	
$(2.67 \times 10^3 \ 3)$	673.35	0.36	7.5	av Eβ=	1105 70	
$(2.73 \times 10^3 \ 3)$	607.06	0.41	7.5	av Eβ=	1136 <i>71</i>	
$(2.86 \times 10^3 \ 3)$	476.70	0.59	7.4	av Eβ=	1197 <i>71</i>	
$(2.97 \times 10^3 \ 3)$	369.80	0.9	7.3	av Eβ=	1247 71	
$(2.97 \times 10^3 \ 3)$	366.84	0.84	7.3	av Eβ=	1248 71	
$(3.12 \times 10^3 \ 3)$	222.08	1.14	7.3	av Eβ=	1316 <i>71</i>	
$(3.20 \times 10^3 \ 3)$	139.30	1.89	7.1	av Eβ=	1355 <i>71</i>	
$(3.30 \times 10^3 \ 3)$	43.53	86	5.5	av Eβ=	1400 71	

[†] Absolute intensity per 100 decays.

¹¹³Pd β^- decay 1988FoZY,1990Ro16 (continued)

$\gamma(^{113}\text{Ag})$

I γ normalization: from Σ I(γ +ce) to g.s.=81.5 20 assuming I β (g.s.)=0. (Δ J=2, $\Delta\pi$ =-). 1990Fo07 give I γ (222 γ)=2.3%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{@}$	Comments
43.6 2	0.15	43.53	7/2+	0.0	1/2-	E3	1047	α (K)exp=90 40; α (L)exp=700 300 α (K)= 95.5; α (L)= 745; α (M)= 155.3 B(E3)(W.u.)=0.074 4
49.6 2	0.04	526.16		476.70	$5/2^{+}$			
51.5 2	0.01	273.59	(1/2)	222.08	$3/2^{+}$			
57.9 <i>3</i>		280.0	1/2+	222.08	3/2+			E_{γ}, I_{γ} : from 1990Ro16. $I_{\gamma}(280)=100 4$, $I_{\gamma}(57,9)=1.2.6$.
95.74 20	6.5	139.30	9/2+	43.53	7/2+	M1	0.478	α (K)exp=0.46 4 α (K)= 0.415; α (L)= 0.0515; α (M)=0.00975; α (N+)=0.00196
96.0 <i>3</i>	0.50	366.84	$(5/2^{-})$	270.82	$(3/2^{-})$			
147.73 20	0.35	369.80	7/2+	222.08	3/2+	E2	0.362	α (K)exp=0.38 <i>15</i> α (K)= 0.294; α (L)= 0.0557; α (M)=0.01075; α (N+)=0.00200 B(E2)(W.u.)>1.1×10 ²
178.5	0.02	222.08	3/2+	43.53	7/2+	[E2]		B(E2)(W.u.)=0.034 <i>4</i> E _v .I _v : from 1990Ro16.
205.87 20	0.08	476.70	5/2+	270.82	$(3/2^{-})$			
222.06 20	2.4	222.08	3/2+	0.0	1/2-	E1	0.0166	α (K)exp≤0.03 α (K)=0.01450; α (L)=0.00172; α (M)=0.00032 B(E1)(W µ)=1.12×10 ⁻⁶ 10
230.49.20	0.27	369.80	$7/2^{+}$	139.30	$9/2^{+}$			B(E1)(W.u.)=1.12×10
254.61 20	0.43	476.70	5/2+	222.08	$3/2^+$			
257.1 3	0.27	783.16	(3/2, 5/2, 7/2)	526.16	- 1			
270.81 20	1.1	270.82	$(3/2^{-})$	0.0	$1/2^{-}$			
273.6 2	0.04	273.59	(1/2)	0.0	$1/2^{-}$			
280.0 2		280.0	$1/2^{+}$	0.0	$1/2^{-}$			
326.28 20	0.21	369.80	7/2+	43.53	7/2+			
336.3 <i>3</i>	0.11	607.06		270.82	$(3/2^{-})$			
337.32 20	0.04	476.70	$5/2^{+}$	139.30	$9/2^{+}$			
366.8 <i>3</i>	0.66	366.84	$(5/2^{-})$	0.0	$1/2^{-}$			
386.9 2	0.28	526.16		139.30	9/2+			
414.9 <i>3</i>	0.14	781.79	$(5/2^{-})$	366.84	$(5/2^{-})$			
433.4 2	0.11	476.70	5/2+	43.53	7/2+			
472.1 3	0.11	611.31	$(3/2^{-})$	139.30	9/2+			
482.6 2	1.7	526.16		43.53	7/2+			
510.9 3	0.21	781.79	$(5/2^{-})$	270.82	$(3/2^{-})$			
534.2 3	0.18	673.35	$\langle 2 2-\rangle$	139.30	9/2 ⁺			
56/./ 3	1.6	611.31	(3/2)	43.53	1/2 '			
607.03	0.23	007.00	(2 2 5 2 2 2 2)	0.0	1/2			
043./ 3	6.0	183.10	(3/2, 5/2, 1/2)	139.30	9/2 '			
720 62 2	0.07	0/3.33	(2) 2 5 12 7 12	0.0	1/2			
139.03 3 781 0 3	4.8	781 70	(3/2,3/2,1/2) $(5/2^{-})$	43.33	$1/2^{-1}$			
101.7 5	0.07	/01./2	(3/4)	0.0	1/ 4			

[†] From 1988FoZY.

[±] From $\alpha(K)\exp(1988FoZY)$. The conversion coefficients were determined by simultaneous measurements of γ and ce.

[#] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹¹³Pd β⁻ decay 1988FoZY,1990Ro16

Decay Scheme

¹¹³Pd β^- decay 1988FoZY,1990Ro16

 $^{113}_{\ 47} Ag_{66}$