	History								
	_	Туре		Author Citation Literature Cutoff Date					
	F	Full Evaluation	S. La	lkovski, F. G. Kondev NDS 124, 157 (2015) 1-Aug-2014					
$Q(\beta^{-}) = -10504$ Å	3; S(n)=	=12051 <i>11</i> ; S(p	o)=4020	12; $Q(\alpha)=2078 \ 10 \ 2012Wa38$					
				¹¹² Te Levels					
				Cross Reference (XREF) Flags					
				A 112 I ε decay					
				$ B \qquad ^{113} Xe \beta^+ p decay $					
				C $\frac{112}{58} Sn(\alpha, 4n\gamma)$					
				\mathbf{D} = $(10^{\circ} \text{N}_1, 4\text{p}\gamma), (10^{\circ} \text{N}_1, \alpha 2\text{p}\gamma)$					
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments					
$0.0^{@}$	0^+	2.0 min 2	AB D	$\%\varepsilon + \%\beta^+ = 100$					
	2+			$T_{1/2}$: From 372.7 β - γ (t) in ¹¹² Te ε decay (1976Will).					
689.00° 20	21		AB D	J^{*} : 689.0 γ E2 to 0'; band member.					
14/6.1 3	4'		ABD	J^{π} : /8/.1 γ E2 to 2'; band member.					
1483.0 0	(2^{+})		В	J^{π} : /94.67 to 2 ⁻ ; direct feeding from the beta-delayed proton decay of Z^{π} (J^{π} =(5/2 ⁺)) in 2005Ja10, 1985Ti02.					
2261.7 4	(5)		D	J^{π} : 784.8 γ to 4 ⁺ , 357.2 γ from 6 ⁺ .					
2297.6 [@] 4	6+		D	J^{π} : 821.3 γ E2 to 4 ⁺ ; band member.					
2619.7 4	6+		D	J^{π} : 1144.5 γ E2 to 4 ⁺ ; no decay branch to the 2 ⁺ state.					
2839.0 4	0±		D						
3362.3 4	8'		D	J [*] : 1064.5 γ E2 to 6'; band member.					
3454.3 ⁴ 4 3512.1 4	(8)		D D	J^{*} : 1/5.7 γ d from (9), 91.9 γ to 8'; band member.					
3629.8 ^{&} 4	(9 ⁻)		D	J^{π} : 267.5 γ D to 8 ⁺ , 479.8 γ from (10 ⁻).					
3785.6 4			D						
3959.1 4	(9 ⁻)		D	J^{π} : 266.6 γ (E1) from 10 ⁺ , 596.5 γ to 8 ⁺ .					
4109.5 ^{x} 4	(10 ⁻)		D	J^{π} : 655.1 γ E2 from (8 ⁻); band member.					
4225.9 4	10+		D	J^{π} : 863.8 γ E2 to 8 ⁺ ; band member.					
4329.4 5	(11^{-})		ע ח	I^{π} : 699 32 F2 to (9 ⁻)					
4425.3 5	(11)		D	3 . 077.57 E2 to (7).					
4460.3 ^{<i>a</i>} 4	10^{+}		D	J^{π} : 1098.0 γ E2 to 8 ⁺ ; band member.					
4827.0 [@] 5	12^{+}		D	J^{π} : 601.2 γ E2 to 10 ⁺ ; band member.					
4864.9 ^{&} 5	(12 ⁻)		D	J^{π} : 755.4 γ E2 to (10 ⁻); band member.					
5040.9 5			D						
5124.0 ^{X} 5	(13 ⁻)		D	J^{π} : 794.9 γ E2 to (11 ⁻); band member.					
5212.1 ^d 5	12+		D	J^{π} : 751.8 γ E2 to 10 ⁺ ; band member.					
5432.7° 5	(14 ⁻)		D	J^{π} : 567.8 γ E2 to (12 ⁻); band member.					
5540.0° 5	14+		D	J^{π} : 713.0 γ E2 to 12 ⁺ ; band member.					
5755.10 5871 1 & 5	(15^{-})		ע	I^{π} : 750 52 E2 to (12 ⁻); hand member					
5970.8 ^{<i>a</i>} 5	14+		ע ח	I^{π} . 758.7 ν E2 to (15), band member					
$6294.4^{@}5$	16+		ק ח	J^{π} : 754 4 γ E2 to 12 ⁺ ; band member					
6439 1 & 5	(16^{-})		ק ח	I^{π} : 1006 4 γ E2 to (14 ⁻): band member					
6709.4 9	(17^+)		D	J^{π} : 415 γ to 16 ⁺ , 925 γ from 18 ⁺ .					

¹¹²Te Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
6772.4 ^{<i>a</i>} 6	16+		D	J^{π} : 801.6 γ E2 to 14 ⁺ ; band member.
6904.7? 6	(17-)		D	J^{π} : 465.6 γ D to (16 ⁻).
6951.1 ^{&} 5	(17^{-})		D	J^{π} : 1076.7 γ E2 to (15 ⁻); band member.
7029.0? 5	(17^{-})		D	J^{π} : 1154.6 γ to (15 ⁻).
7251.8 [@] 6	18^{+}		D	J^{π} : 957.4 γ E2 to 16 ⁺ ; band member.
7565.1 ^{&} 11	(18^{-})		D	J^{π} : 1126 γ to (16 ⁻); band member.
7634.4 ^a 6	18^{+}	0.21 ps +7-4	D	J^{π} : 862.0 γ E2 to 16 ⁺ ; band member.
7857.9? 6			D	
7911.7 <mark>6</mark> 6	(19 ⁻)		D	J^{π} : 659.8 γ D to 18 ⁺ , 992.5 γ E2 from (21 ⁻); band member.
8117.1 ^{&} <i>12</i>	(19 ⁻)		D	J^{π} : 1166 γ to (17 ⁻); band member.
8168.2 [@] 6	20^{+}		D	J^{π} : 916.4 γ E2 to 18 ⁺ ; band member.
8211.6 6	20^{+}		D	J^{π} : 959.8 γ E2 to 18 ⁺ , 979.7 γ E2 from 22 ⁺ .
8491.0 6	(21)		D	J^{π} : 279.4 γ D to 20 ⁺ .
8563.2 ⁴ 6	20+	0.14 ps $+4-3$	D	J^{n} : 928.7 γ to 18 ⁺ ; band member.
8904.3 ⁰ 6	(21^{-})		D	J^{π} : 736.2 γ D to 20 ⁺ ; band member.
9087.5 8	201		D	J^* : 1835 γ to 18'; band member.
9191.2 ⁶ 6	22^+		D	J^{π} : 1023.0 γ E2 to 20 ⁺ ; band member.
$9493.2^{\circ}8$	21'	$101 f_{0} + 21 - 21$	D	J [*] : 406 γ to 20 ⁺ , 1325 γ to 20 ⁺ ; band member.
9301.4^{h}	22	101 18 +51-21	D	J^{T} : 998.27 to 20°; ballu member.
9/10.7° 0	(23)		D	$J^{*}: 800.3\gamma E2$ to (21).
9/54.5 ⁴ 6	(23)		D	J^{*} : 563.3 γ D to 22'.
9958.4° 8 10054 22 6	22		ע	J^{*} : 465.1 γ to 21°, 870.8 γ to 20°; band member.
10004.210	24+		D	π 1202 α to 22 ⁺ band member
10393.3 10	24 23 ⁺		ם ח	I^{π} : 476 4v to 22 ⁺ , 941 5v to 21 ⁺ : hand member
$10618.1^{b}6$	(25^{-})		ב ת	I^{π} : 907 A_{22} to (23 ⁻): hand member
10613.2^{a} 7	(25^{+})	70 fs $+21-15$	D	I^{π} : 1071.8 γ to 22 ⁺ ; hand member.
10930.6 [°] 8	24 ⁺	/01012110	D	J^{π} : 495.9 γ to 23 ⁺ , 972.1 γ to 22 ⁺ ; band member.
11023.4 ^d 10	(25^{-})		D	J^{π} : 630 γ to 24 ⁺ , 1269 γ to (23 ⁻); band member.
11438.7 ^C 8	25+		D	J^{π} : 507.9 γ to 24 ⁺ , 1004.4 γ to 23 ⁺ ; band member.
11657.3 [@] 12	26^{+}		D	J^{π} : 1264 γ to 24 ⁺ ; band member.
11779.7 ^a 8	26^{+}	50 fs +15-10	D	J^{π} : 1146.4 γ to 24 ⁺ ; band member.
11968.9 ^C 8	26^{+}		D	J^{π} : 530.4 γ to 25 ⁺ , 1038.1 γ to 24 ⁺ .
11990.2 ^b 11	(27 ⁻)		D	J^{π} : 1372 γ to (25 ⁻); band member.
12276.3 ^d 11	(27 ⁻)		D	J^{π} : 619 γ to 26 ⁺ , 1253 γ to (25 ⁻); band member.
12517.8 [°] 8	27+		D	J^{π} : 548.8 γ to 26 ⁺ , 1079.2 γ to 25 ⁺ ; band member.
12997.4 ^{<i>a</i>} 8	28^+	37 fs +11-8	D	J^{π} : 1217.7 γ to 26 ⁺ ; band member.
13080.9° 8	281		D	J^{*} : 563.1 γ to 27 ⁺ , 1112.0 γ to 26 ⁺ ; band member.
13455.3° 12	(29^{-})		D	J^{π} : 1179 γ to (27 ⁻); band member.
1300/.0° 8	29.		D D	J^{*} : 586.09 to 28°, 1149.19 to 27°; band member.
13069 2 15			ם ח	
14265.0 ^C 8	30^{+}		D	J^{π} : 597.8 γ to 29 ⁺ , 1184.3 γ to 28 ⁺ ; band member.
14288.6 ^{<i>a</i>} 8	30+	27 fs +8-6	D	J^{π} : 1291.2 γ to 28 ⁺ ; band member.
14909.0 [°] 8	31+		D	J^{π} : 644.3 γ to 30 ⁺ , 1242.1 γ to 29 ⁺ ; band member.
14996.3 ^b 16	(31 ⁻)		D	J^{π} : 1541 γ to (29 ⁻); band member.
15333.2 18			D	-
15408.2 18	22+		D	J^{n} : (31 ⁻) assumed in 2007Pa07.
15564.1° 8	321		D	J [*] : 055.2γ to 31 ⁺ , 1298.9 γ to 30 ⁺ ; band member.

Continued on next page (footnotes at end of table)

¹¹²Te Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
15652.4^{a} 8	32^{+}	21 fs $+6-4$	D	I^{π} : 1363.8 γ to 30 ⁺ : hand member.
16274.2 [°] 8	33+	21 10 10 1	D	J^{π} : 710.1 γ to 32 ⁺ , 1365.2 γ to 31 ⁺ ; band member.
16998.4 ^C 9	34+		D	J^{π} : 724.2 γ to 33 ⁺ , 1434.2 γ to 32 ⁺ ; band member.
17153.2 ^a 9	34+		D	J^{π} : 1500.8y to 32 ⁺ ; band member.
17786.5 [°] 9	35+		D	J^{π} : 788 γ to 34 ⁺ , 1512.4 γ to 33 ⁺ ; band member.
18587.2 ^C 9	36+		D	J^{π} : 801 γ to 35 ⁺ , 1588.7 γ to 34 ⁺ ; band member.
18778.1 ^{<i>a</i>} 10	36+		D	J^{π} : 1624.8 γ to 34 ⁺ ; band member.
19515.8 ^C 9	37+		D	J^{π} : 928 γ to 36 ⁺ , 1729.4 γ to 35 ⁺ ; band member.
20442.2 ^C 14	38+		D	J^{π} : 1855 γ to 36 ⁺ ; band member.
20499.1 ^{<i>a</i>} 10	38+		D	J^{π} : 1721.0 γ to 36 ⁺ ; band member.
21523.9 ^C 14	39+		D	J^{π} : 2008 γ to 37 ⁺ ; band member.
22305.8 ^{<i>a</i>} 10	40^{+}		D	J^{π} : 1806.7 γ to 38 ⁺ ; band member.
22556.2 [°] 17	40^{+}		D	J^{π} : 2114 γ to 38 ⁺ ; band member.
24248.3 ^{<i>a</i>} 11	42^{+}		D	J^{π} : 1942.5 γ to 40 ⁺ ; band member.
26353.3 ^{<i>a</i>} 15	44+		D	J^{π} : 2105 γ to 42 ⁺ ; band member.
28646.4 ^{<i>a</i>} 18	46+		D	J^{π} : 2293 γ to 44 ⁺ ; band member.
x ^g	(21^{+})		D	Additional information 1.
				J^{π} : tentative assignment based on the observed feeding to the 20 ⁺ yrast states
0.440 0 10	(22)		_	and band interpretation. π^{π}
$966.0 + x^8 10$	(23^{+})		D	J^{π} : 966 γ to (21 ⁺); band member.
$1985.0+x^{8}$ 15	(25^+)		D	J^{*} : 1019 γ to (23 ⁺); band member.
$3099.0+x^8$ 18	(27^{+})		D	J^{π} : 1114 γ to (25'); band member.
4317.9+x ⁸ 18	(29^+)		D	J^{π} : 1218.9 γ to (27 ⁺); band member.
$5649.0+x^{\circ}$ 18 7110.4 + x° 18	(31^{+})		D	J^{*} : 1331.1 γ to (29 ⁺); band member.
$7119.4 \pm x^{8}$ 18 $8722.1 \pm x^{8}$ 10	(33^{+})		ע	J^{-1} : 14/0.4 γ to (31 ⁻¹); band member.
$\frac{8}{32.1+x^8}$ 19	(33)		ע	J^{-1} 1012.07 to (35); band member
$10309.7 \pm x^{8}$ 19 12430 5 \pm x^{8} 10	(37)		ע	J^{*} . 1777.07 to (35), band member
$12430.5 \pm x^{8}$ 19 14501 5 $\pm x^{8}$ 10	(39)		ע	J^{π} : 2071 Ω_{ν} to (37 ⁺); band member
f	(41)		D 2	
y.	(21)		D	Additional information 2. \overline{M}_{i} tontotive assignment based on the observed feeding to the (20 ⁺) great state
				and hand interpretation
a_{0} a_{1} f_{1} a_{2}	(22-)		D	π
860.0+y 10	(23)		D	J^{*} : 860 γ to (21); band member.
1431.2+y 13	(2.5-)		D	
$1793.5 + y^{J} II$	(25^{-})		D	J^{n} : 933.5 γ to (23 ⁻); band member.
2802.2+y ^J 11	(27-)		D	J^{π} : 1008.7 γ to (25 ⁻); band member.
3926.2+y ^f 12	(29 ⁻)		D	J^{π} : 1124.0 γ to (27 ⁻); band member.
5096.0+y 16			D	
5138.3+y ^f 12	(31^{-})		D	J^{π} : 1212.1 γ to (29 ⁻); band member.
$6449.0+v^{f}$ 12	(33-)		D	I^{π} : 1310.7 γ to (31 ⁻), hand member.
$78/3.0 \pm \sqrt{13}$	(35^{-})		ב ת	I^{π} : 1394 (by to (33 ⁻); band member
$76+3.0+y^{5}$ 13	(35)		D 2	$J = 1510.5 + (25^{-})$, band memoer.
9361.6+y ^{J 13}	(37)		D	J^{*} : 1518.5 γ to (35); band member.
11037.7+y ^J 14	(39 ⁻)		D	J^{π} : 1676.1 γ to (37 ⁻); band member.
12913.5+y ^{J} 14	(41^{-})		D	J^{π} : 1875.8 γ to (39 ⁻); band member.
15019.0+y f 14	(43-)		D	J^{π} : 2105.5 γ to (41 ⁻); band member.
$17346.0+v^{f}$ 17	(45-)		п	I^{π} : 2327 γ to (43 ⁻); band member
Z ^e 7	(18^{-})		D	Additional information 3.
—	(-	J^{π} : tentative assignment, based on the observed feeding to the (20 ⁺) vrast state
				and band interpretation.
867.0+z ^e 10	(20^{-})		D	J^{π} : 867 γ to (18 ⁻); band member.
	. ,			

Continued on next page (footnotes at end of table)

¹¹²Te Levels (continued)

Comments

E(level) [†]	$J^{\pi \ddagger}$	XREF	
1807.0+z ^e 15	(22^{-})	D	J^{π} : 940 γ to (20 ⁻); band member.
2828.0+z ^e 18	(24 ⁻)	D	J^{π} : 1021 γ to (22 ⁻); band member.
3930.0+z ^e 20	(26^{-})	D	J^{π} : 1102 γ to (24 ⁻); band member.
5136.3+z ^e 21	(28^{-})	D	J^{π} : 1206.3 γ to (26 ⁻); band member.
6427.5+z ^e 21	(30 ⁻)	D	J^{π} : 1291.2 γ to (28 ⁻); band member.
7785.8+z ^e 21	(32^{-})	D	J^{π} : 1358.3 γ to (30 ⁻); band member.
9187.7+z ^e 21	(34 ⁻)	D	J^{π} : 1401.8 γ to (32 ⁻); band member.
10688.5+z ^e 21	(36 ⁻)	D	J^{π} : 1500.8 γ to (34 ⁻); band member.
12328.7+z ^e 22	(38 ⁻)	D	J^{π} : 1640.2 γ to (36 ⁻); band member.
14138.4+z ^e 22	(40^{-})	D	J^{π} : 1809.7 γ to (38 ⁻); band member.
16133.2+z ^e 22	(42^{-})	D	J^{π} : 1994.8 γ to (40 ⁻); band member.
18318.2+z ^e 24	(44 ⁻)	D	J^{π} : 2185 γ to (42 ⁻); band member.

[†] From a least-squares fit to $E\gamma$.

[‡] From 1994Pa22 and 2007Pa07, based on deduced transition multipolarities and the apparent band structures.

[#] From DSAM (centoid shift) in 2007Pa07.

[@] Band(A): g.s. band.

& Band(B): π =- band based on the (8⁻) state.

^{*a*} Band(C): $\Delta J=2$, $\pi=+$ intruder band based on the 10⁺ state.

^b Band(D): $\Delta J=2$, $\pi=-$ band based on the (19⁻) state.

^c Band(E): $\Delta J=1$, $\pi=+$ band based on the 20⁺ state.

 d Band(F): $\Delta J{=}2,\,\pi{=}{-}$ band based on the (23⁻) state.

^{*e*} Band(G): $\Delta J=2$, $\pi=-$ band based on the (18⁻) state.

^{*f*} Band(g): $\Delta J=2$, $\pi=-$ band based on the (21⁻) state.

^g Band(H): $\Delta J=2$, $\pi=+$ band based on the (21⁺) state.

$\gamma(^{112}\text{Te})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
689.00	2+	689.0 2	100	0.0	0^{+}	E2	Mult.: DCO=1.00 2 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
1476.1	4+	787.1 2	100	689.00	2+	E2	Mult.: DCO=1.01 2 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
1483.6	(2^{+})	794.6 5	100	689.00	2^{+}		E _γ : From 1985Ti02. Other: 794.5 keV 2 (1980GoZX).
2261.7	(5)	784.8 2	100	1476.1	4+		
2297.6	6+	821.3 2	100	1476.1	4+	E2	Mult.: DCO=0.98 2 from (⁵⁸ Ni,4pγ) in 1994Pa22.
2619.7	6+	357.2 2	37 5	2261.7	(5)		
		1144.5 2	100 5	1476.1	4+	E2	Mult.: DCO=1.05 20 from (⁵⁸ Ni,4py) in 1994Pa22.
2839.0		219.5 2	100	2619.7	6+		Mult.: DCO 1.31 21 from (⁵⁸ Ni,4py) in 1994Pa22.
3362.3	8+	1064.5 2	100	2297.6	6+	E2	Mult.: DCO=0.96 4 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
3454.3	(8^{-})	91.9 2	100 5	3362.3	8+		
		615.5 2	8.9	2839.0			
3512.1		673.1 2	100	2839.0			
3629.8	(9 ⁻)	175.7 2	35.0 8	3454.3	(8-)	D	Mult.: DCO=0.85 7 from (⁵⁸ Ni,4py) in 1994Pa22.
		267.5 2	100 5	3362.3	8+	D	Mult.: DCO=0.61 2 from (58 Ni,4p γ) in 1994Pa22 for the 266-keV doublet.
3785.6		423.4 2	100	3362.3	8+		
3959.1	(9 ⁻)	173.7 2	35 5	3785.6			
		596.5 2	100 20	3362.3	8+		
4109.5	(10^{-})	479.8 2	7.7 7	3629.8	(9-)		
		655.1 2	100 5	3454.3	(8 ⁻)	E2	Mult.: DCO=1.05 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.

$\gamma(^{112}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
4225.9	10+	266.6 2	4.47 21	3959.1	(9 ⁻)	D	Mult.: DCO=0.61 2 from $({}^{58}\text{Ni},4p\gamma)$ in 1994Pa22 for the 266-keV doublet.
		440.2 2	2.77 21	3785.6			
		863.8 2	100 4	3362.3	8+	E2	Mult.: DCO=0.95 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
4239.4		727.3 2	100	3512.1			50
4329.1	(11 ⁻)	699.3 2 639 7 2	100 100	3629.8 3785.6	(9 ⁻)	E2	Mult.: DCO=1.11 6 from $({}^{38}Ni,4p\gamma)$ in 1994Pa22.
4460 3	10^{+}	1098.0.2	100	3362.3	8+	F2	Mult : DCO-0.99.13 from $({}^{58}$ Ni 4m) in 1994Pa22
4827.0	12+	601.2.2	100	4225.9	10 ⁺	E2 E2	Mult: $DCO=1.02.3$ from $(^{58}Ni.4ny)$ in 1994 a22.
4864.9	(12^{-})	755 4 2	100	4109 5	(10^{-})	E2 E2	Mult: $DCO=1.02.6$ from $(^{58}Ni.4ny)$ in 1994Pa22.
5040.9	(12)	615.6.2	100	4425.3	(10)	1.2	Watt.: Deo=1.05 0 from (14,+py) in 1994 azz.
5124.0	(13^{-})	794.9.2	100	4329.1	(11^{-})	E2	Mult.: DCO=1.02.7 from (⁵⁸ Ni.4py) in 1994Pa22
5212.1	12^{+}	751.8 2	100	4460.3	10+	E2	
		986 [#] 1		4225.9	10^{+}		
5432.7	(14^{-})	308.6 2	6.7 7	5124.0	(13^{-})		
		567.8 2	100 7	4864.9	(12^{-})	E2	Mult.: DCO=1.11 5 from $({}^{58}Ni.4p\gamma)$ in 1994Pa22.
5540.0	14^{+}	713.0 2	100	4827.0	12+	E2	Mult.: DCO=1.05 4 from $({}^{58}Ni.4p\gamma)$ in 1994Pa22.
5753.1		712.2 2	100	5040.9			
5874.4	(15 ⁻)	441.6 2	21.8 13	5432.7	(14 ⁻)		
		750.5 2	100 5	5124.0	(13 ⁻)	E2	Mult.: DCO=1.02 6 from (⁵⁸ Ni,4pγ) in 1994Pa22.
5970.8	14^{+}	758.7 2	100 <i>3</i>	5212.1	12^{+}	E2	Mult.: DCO=0.95 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
6294.4	16+	754.4 2	100	5540.0	14^{+}	E2	Mult.: DCO=0.99 <i>3</i> from (⁵⁸ Ni,4pγ) in 1994Pa22.
6439.1	(16 ⁻)	1006.4 2	100	5432.7	(14 ⁻)	E2	Mult.: DCO=1.11 <i>11</i> from (58 Ni,4p γ) in 1994Pa22.
6709.4	(17^{+})	415 [#] 1	100	6294.4	16^{+}		
6772.4	16+	801.6 2	100	5970.8	14^{+}	E2	Mult.: DCO 1.06 14 from (⁵⁸ Ni,4py) in 1994Pa22.
6904.7?	(17 ⁻)	465.6 [@] 2	100	6439.1	(16 ⁻)	D	E_{γ} : observed only in 1994Pa22; not confirmed in 2007Pa07.
(051.1	(17-)	107(7.2)	100	5074 4	$(1 \overline{c} -)$	50	Mult.: DCO= $0.52 \ 3 \ \text{from} ({}^{58}\text{Ni},4p\gamma) \ \text{in} \ 1994Pa22.$
6951.1	(17)	10/6.72	100	58/4.4	(15)	E2	Mult.: $DCO=0.97$ 14 from (50 N1,4p γ) in 1994Pa22.
7029.0?	(17)	1154.6 2	100	5874.4	(15)	(E2)	E_{γ} : observed only in 1994Pa22; not confirmed in 2007Pa07.
5351 0	10+	0.55 4 0	100	(2014)	1.64	50	Mult.: DCO=1.07 21 from $({}^{58}N1,4p\gamma)$ in 1994Pa22.
7251.8	18+	957.4 2	100	6294.4	16+	E2	Mult.: DCO=0.92 7 from $({}^{56}N_{1},4p\gamma)$ in 1994Pa22.
7565.1	(18 ⁻)	1126 " 1	100	6439.1	(16 ⁻)		2
7634.4	18+	862.0 2	100	6772.4	16+	E2	$B(E2)(W.u.) = 1.8 \times 10^2 4$
		025# 1		(700.4	(17+)		Mult.: DCO=0.98 <i>16</i> from $({}^{36}N_{1},4p\gamma)$ in 1994Pa22.
7057.00		925^{-1}	100	0/09.4	(17^{-})		
/85/.9?		953.2 2	100	6904.7?	(17)		E_{γ} : observed only in 1994Pa22; not confirmed in 2007Pa07.
7911.7	(19 ⁻)	659.8 2	100	7251.8	18^{+}	D	Mult.: DCO=0.58 <i>4</i> from (⁵⁸ Ni,4pγ) in 1994Pa22.
8117.1	(19 ⁻)	1166 [#] 1	100	6951.1	(17 ⁻)		
8168.2	20^{+}	916.4 2	100	7251.8	18^{+}	E2	Mult.: DCO=0.96 5 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8211.6	20^{+}	959.8 2	100	7251.8	18^{+}	E2	Mult.: DCO=1.18 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8491.0	(21)	279.4 2	100	8211.6	20^{+}	D	Mult.: DCO=0.62 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
8563.2	20^{+}	928.7 [#] 3	100	7634.4	18^{+}	[E2]	$B(E2)(W.u.)=1.8\times10^2+5-4$
8904.3	(21 ⁻)	736.2 2	51.1 21	8168.2	20^{+}	D	Mult.: DCO=0.69 9 from (⁵⁸ Ni,4pγ) in 1994Pa22.
		992.5 2	100 4	7911.7	(19 ⁻)	E2	Mult.: DCO=1.12 8 from (⁵⁸ Ni,4pγ) in 1994Pa22.
9087.5	20^{+}	1836 [#] 1	100	7251.8	18^{+}		
9191.2	22^{+}	979.7 2	54.6 23	8211.6	20^{+}	E2	Mult.: DCO=0.97 12 from (⁵⁸ Ni,4py) in 1994Pa22.
		1023.0 2	100 5	8168.2	20^{+}	E2	Mult.: DCO=0.97 14 from (⁵⁸ Ni,4pγ) in 1994Pa22.
9493.2	21^{+}	406 [#] 1		9087.5	20^{+}		
		1325 [#] 1		8168.2	20^{+}		
				Continu	ied on n	ext page (footnotes at end of table)

γ ⁽¹¹²Te) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
9561.4	22^+	998.2 [#] 3	100	8563.2	20^+	[E2]	$B(E2)(W.u.) = 1.8 \times 10^2 + 4 - 4$
9/10.7	(25)	806.3.2	40.5 10	8904 3	(21^{-})	E2	Mult : DCO=0.88.8 from $({}^{58}Ni 4nv)$ in 1994Pa22
9754 5	(23^{-})	$563.3^{\#}.2$	100 5	9191.2	22+	D	Mult : $DCO=0.63.6$ from $(^{58}Ni 4ny)$ in 1994Pa22
9958.4	(23)) 22+	$465.1^{\#}3$	100	9493.2	21+	D	
<i>yy</i> 50.1		870.8 [#] 3		9087.5	20^{+}		
10054.2?		862.7 [@] 2	100	9191.2	22 ⁺		E_{γ} : transition observed only in 1994Pa22 and not confirmed in 2007Pa07.
10393.3	24+	1202 [#] 1	100	9191.2	22+		
10434.6	23+	476.4 [#] 3		9958.4	22^{+}		
		941.5 [#] 3		9493.2	21^{+}		
10618.1	(25 ⁻)	907.4 2	100	9710.7	(23 ⁻)		
10633.2	24+	1071.8 [#] 3	100	9561.4	22^{+}	[E2]	$B(E2)(W.u.)=1.8\times10^2 +5-4$
10930.6	24+	495.9 [#] 3		10434.6	23+		
		972.1 [#] 3		9958.4	22^{+}		
11023.4	(25 ⁻)	630 [#] 1		10393.3	24+		
		1269 [#] 1		9754.5	(23 ⁻)		
11438.7	25^{+}	507.9 [#] 3		10930.6	24+		
		1004.4 [#] 3		10434.6	23+		
11657.3	26+	1264 [#] 1	100	10393.3	24+		
11779.7	26^{+}	1146.4 [#] 3	100	10633.2	24^{+}	[E2]	$B(E2)(W.u.)=1.8\times10^2 4$
11968.9	26^{+}	530.4 [#] 3		11438.7	25+		
		1038.1 [#] 3		10930.6	24+		
11990.2	(27 ⁻)	1372 [#] 1	100	10618.1	(25 ⁻)		
12276.3	(27 ⁻)	619 [#] 1		11657.3	26+		
		1253 [#] 1		11023.4	(25 ⁻)		
12517.8	27+	548.8 [#] 3		11968.9	26^{+}		
		1079.2 [#] 3		11438.7	25+		
12997.4	28^{+}	1217.7 [#] 1	100	11779.7	26^{+}	[E2]	$B(E2)(W.u.)=1.8\times10^2 +5-4$
13080.9	28^{+}	563.1 [#] 3		12517.8	27+		
		1112.0 [#] 3		11968.9	26^{+}		
13455.3	(29 ⁻)	1179 [#] 1		12276.3	(27 ⁻)		
		1465 [#] 1		11990.2	(27 ⁻)		
13667.0	29+	586.0 [#] 3		13080.9	28+		
		1149.1 [#] 3		12517.8	27+		
13878.2		1888 [#] 1	100	11990.2	(27 ⁻)		
13969.2		1979 [#] 1	100	11990.2	(27 ⁻)		
14265.0	30^{+}	597.8 [#] 3		13667.0	29+		
		1184.3 [#] 3		13080.9	28^{+}		
		1268 [#] 1		12997.4	28^{+}		
14288.6	30^{+}	1207 [#] 1		13080.9	28^{+}	[E2]	
		1291.2 [#] 3	100	12997.4	28^{+}	[E2]	$B(E2)(W.u.)=1.8\times10^2 4$
14909.0	31+	619 [#] 1		14288.6	30^{+}		
		644.3 [#] 3		14265.0	30^{+}		
		1242.1 [#] 3		13667.0	29+		

γ ⁽¹¹²Te) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
14996.3	(31-)	1541 [#] 1	100	13455.3	(29 ⁻)		
15333.2		1455 [#] 1	100	13878.2			
15408.2		1439 [#] 1	100	13969.2			
15564.1	32+	655.2 [#] 3		14909.0	31+		
		1298.9 [#] 3		14265.0	30^{+}		
15652.4	32+	1363.8 [#] 3	100	14288.6	30^{+}	[E2]	$B(E2)(W.u.)=1.8\times10^2 4$
16274.2	33+	710.1 [#] 3		15564.1	32+		
		1365.2 [#] 3		14909.0	31+		
16998.4	34+	724.2 [#] 3		16274.2	33+		
		1434.2 [#] 3		15564.1	32+		
17153.2	34+	1500.8 [#] 3	100	15652.4	32^{+}		
17786.5	35+	788 [#] 1		16998.4	34+		
		1512.4 [#] 3		16274.2	33+		
18587.2	36+	801 [#] 1		17786.5	35+		
		1588.7 [#] 3		16998.4	34+		
18778.1	36+	1624.8 ^{<i>m</i>} 3	100	17153.2	34+		
19515.8	37-	928" 1		18587.2	36+		
20442.2	20+	1729.4" 3	100	17786.5	35+		
20442.2	38 · 28+	1855" I	100	18587.2	30° 26+		
20499.1	38 · 20+	$1/21.0^{-3}$	100	18//8.1	30° 27+		
21525.9	39 ⁺	$2008^{\circ} I$ 1806 7 [#] 2	100	19515.8	37° 20+		
22303.0	40 40 ⁺	$2114^{\#}$	100	20499.1	20+		
22330.2	40 42 ⁺	$10/25^{\#}3$	100	20442.2	38 40 ⁺		
24240.5	42 44 ⁺	$2105^{\#}$ 1	100	22303.8	40 42 ⁺		
28646.4	46 ⁺	$2293^{\#}$ 1	100	26353 3	44+		
966.0+x	(23^{+})	$966^{\#}$ 1	100	20353.5 X	(21^+)		
1985.0+x	(25^+)	1019 [#] 1		966.0+x	(23^+)		
3099.0+x	(27^{+})	1114 [#] 1		1985.0+x	(25^{+})		
4317.9+x	(29^{+})	1218.9 [#] 3		3099.0+x	(27^{+})		
5649.0+x	(31^{+})	1331.1 ^{# 3}		4317.9+x	(29^{+})		
7119.4+x	(33 ⁺)	1470.4 [#] 3		5649.0+x	(31 ⁺)		
8732.1+x	(35+)	1612.6 [#] 3		7119.4+x	(33+)		
10509.7+x	(37 ⁺)	1777.6 [#] 3		8732.1+x	(35 ⁺)		
12430.5+x	(39 ⁺)	1920.8 [#] 3		10509.7+x	(37 ⁺)		
14501.5+x	(41^+)	2071.0 [#] 3		12430.5+x	(39^{+})		
860.0+y	(23 ⁻)	860 [#] 1		У	(21^{-})		
1793.5+y	(25 ⁻)	933.5 # 3		860.0+y	(23 ⁻)		
2802.2+y	(27 ⁻)	1008.7 [#] 3		1793.5+y	(25 ⁻)		
		1351 [#] 1		1451.2+y			
3926.2+y	(29 ⁻)	1124.0 [#] 3		2802.2+y	(27 ⁻)		
5138.3+y	(31 ⁻)	1212.1 [#] 3		3926.2+y	(29 ⁻)		
6449.0+y	(33 ⁻)	1310.7 [#] 3		5138.3+y	(31 ⁻)		
		1353 [#] 1		5096.0+y	(22)		
7843.0+y	(35 ⁻)	1394.0 " 3		6449.0+y	(33 ⁻)		

Continued on next page (footnotes at end of table)

					γ ⁽¹¹² Te)	(continue	ed)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
9361.6+y	(37-)	1518.5 [#] 3	7843.0+y	(35-)	5136.3+z	(28 ⁻)	1206.3 [#] 3	3930.0+z	(26 ⁻)
11037.7+y	(39 ⁻)	1676.1 [#] 3	9361.6+y	(37 ⁻)	6427.5+z	(30 ⁻)	1291.2 [#] 3	5136.3+z	(28 ⁻)
12913.5+y	(41 ⁻)	1875.8 [#] 3	11037.7+y	(39 ⁻)	7785.8+z	(32 ⁻)	1358.3 [#] 3	6427.5+z	(30 ⁻)
15019.0+y	(43 ⁻)	2105.5 [#] 3	12913.5+y	(41 ⁻)	9187.7+z	(34-)	1401.8 [#] 3	7785.8+z	(32-)
17346.0+y	(45 ⁻)	2327 [#] 1	15019.0+y	(43 ⁻)	10688.5+z	(36 ⁻)	1500.8 [#] 3	9187.7+z	(34 ⁻)
867.0+z	(20^{-})	867 [#] 1	Z	(18 ⁻)	12328.7+z	(38 ⁻)	1640.2 [#] 3	10688.5+z	(36 ⁻)
1807.0+z	(22 ⁻)	940 [#] 1	867.0+z	(20 ⁻)	14138.4+z	(40^{-})	1809.7 [#] 3	12328.7+z	(38-)
2828.0+z	(24 ⁻)	1021 [#] 1	1807.0+z	(22 ⁻)	16133.2+z	(42 ⁻)	1994.8 [#] 3	14138.4+z	(40 ⁻)
3930.0+z	(26 ⁻)	1102 [#] 1	2828.0+z	(24 ⁻)	18318.2+z	(44 ⁻)	2185 [#] 1	16133.2+z	(42 ⁻)

[†] From 1994Pa22, unless otherwise noted.
 [‡] From DCO ratios in 1994Pa22 and the apparent band structures in 1994Pa22 and 2007Pa07.

From 2007Pa07.
 [@] Placement of transition in the level scheme is uncertain.

	Legend
Level Scheme Intensities: Type not specified	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 $^{112}_{52}{\rm Te}_{60}$

¹¹²₅₂Te₆₀

Level Scheme (continued)	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
		y Decay (Uncertain)

Legend

¹¹²₅₂Te₆₀

Level Scheme (continued)	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
	•	γ Decay (Uncertain)

Legend

 $^{112}_{52}\text{Te}_{60}$

¹¹²₅₂Te₆₀

 $^{112}_{52}$ Te $_{60}$

Adopted Levels, Gammas (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Band(C): $\Delta J=2$, $\pi=+$ intruder band based on the 10 ⁺ state				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 ⁺	28646.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>44</u> +	2293 26353.3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42+	2105 • 24248.3		Band(E): $\Delta J=1, \pi=$	+ band based
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>40</u> +	1942 22305.8		<u>40+</u>	22556.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>38</u> +	1807 20499.1		<u>39+</u> 21 <u>38+</u> 2008	$14 \frac{21523.9}{20442.2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 ⁺	1721 18778.1		$\frac{37^{+}}{36^{+}}$	55 19515.8 18587.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>34</u> +	1625 17153.2	Band(D): ΔJ=2, <i>π</i> =−	$ \frac{35^{+}}{34^{+}} $	89 17786.5 16998.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>32</u> +	1501	band based on the (19 ⁻) state (31 ⁻) 14996.3	$ \frac{33^{+}}{32^{+}} \frac{724}{1365} $ $ \frac{32^{+}}{31^{+}} \frac{710}{655} \frac{1365}{1365} $	34 <u>16274.2</u> 15564.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>30+</u> 28+	14288.6 1291	1541 (29 ⁻) 13455.3	$ \frac{30^{+}}{29^{+}} $	14265.0 84 13667.0 13080.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>26</u> <u>26</u> ⁺	1218 11779.7	1465 (27 ⁻) 11990.2	$ \frac{27^{+}}{26^{+}} $	$\begin{array}{r} 12517.8 \\ 12 \\ 11968.9 \\ 28 \\ 11438.7 \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>24</u> +	1146 10633.2 1072	$\begin{array}{c} 1372 \\ (25^{-}) & 10618.1 \\ \hline (23^{-}) & 907 \\ 907 & 9710.7 \end{array}$	$\frac{24^{+}}{23^{+}} \frac{508}{496} \frac{100}{97} \frac{100}{942} \frac{100}{942}$	10930.6 72 10434.6 9958.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>20</u> +	998 998 8563.2	$(21^{-}) \xrightarrow{806} 8904.3$	$\frac{21^+}{20^+}$ $\frac{465}{406}$ 8	71 <u>9493.2</u> 9087.5
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	<u>18+</u> <u>16+</u>	929 7634.4 862 6772.4	<u>(17)</u> (911.7)		
10^+ 4460.3	14 ⁺ 12 ⁺ 10 ⁺	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Band(F): $\Delta J=2$, $\pi=-$ band based on the (23 ⁻) state				
(27 ⁻)	12276.3			
(25 ⁻) 11023.4				

1269

9754.5

(23⁻)

¹¹²₅₂Te₆₀

|--|

2327 15019.0+y

²¹⁰⁶12913.5+y

¹⁸⁷⁶11037.7+y

¹⁶⁷⁶ 9361.6+y

¹⁵¹⁸ 7843.0+y

(41⁻)

(39-)

(37-)

(35-)

(23⁻) (21⁻)

Band band ba	(G): $\Delta J=2$, $\pi=-$ ased on the (18 ⁻) state		
(44-)	18318.2+z		
(42-)	2185 16133.2+z		
(40-)	1995 14138.4+z		
(38-)	¹⁸¹⁰ 12328.7+z		
(36-)	1640 10688.5+z		
(34-)	¹⁵⁰¹ 9187.7+z		
(32-)	¹⁴⁰² 7785.8+z		
(30-)	¹³⁵⁸ 6427.5+z		
(28-)	¹²⁹¹ 5136.3+z		
(26 ⁻)	¹²⁰⁶ 3930.0+z	Dend	
(24-)	1102 2828.0+z	Band band ba	(g): $\Delta J=2, \pi=-$ ased on the (21^{-})
(22-)	1021 1807.0+z	bund bi	state
(20 ⁻)	940 867.0+z		
(18-)	867 z	(45 ⁻)	17346.0+y
		(43-)	2327 15019.0+y

(33-)	¹³⁹⁴ 6449.0+y	
(31-)	1311 5138.3+y	
(29-)	1212 3926.2+y	
(27-)	1124 2802.2+y	band (H): $\Delta J=2$, $\pi=+$
(25-)	1009 1793.5+y	state
$\frac{(23^{-})}{(21^{-})}$	934 860.0+y	(41+) 14501 5
(21)	<u> </u>	(41) 14501.5+X
		$(39^+) \xrightarrow{2071} 12430.5 + x$
		(37^+) 1921 10509.7+x
		(35 ⁺) ¹⁷⁷⁸ 8732.1+x
		(33^+) ¹⁶¹³ 7119.4+x
		(31 ⁺) ¹⁴⁷⁰ 5649.0+x
		(29^+) 1331 4317.9+x
		(27^+) 1219 3099.0+x
		(25^+) 1114 1985.0+x
		(23^+) 1019 966.0+x

(21+) 966

x

¹¹²₅₂Te₆₀